Reference-Based Multi-Stage Progressive Restoration for Multi-Degraded Images

Image restoration (IR) via deep learning has been vigorously studied in recent years. However, due to the ill-posed nature of the problem, it is challenging to recover the high-quality image details from a single distorted input especially when images are corrupted by multiple distortions. In this p...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 01., Seite 4982-4997
Auteur principal: Zhang, Yi (Auteur)
Autres auteurs: Yang, Qixue, Chandler, Damon M, Mou, Xuanqin
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM377232467
003 DE-627
005 20250306150654.0
007 cr uuu---uuuuu
008 240906s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3451939  |2 doi 
028 5 2 |a pubmed25n1256.xml 
035 |a (DE-627)NLM377232467 
035 |a (NLM)39236125 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Yi  |e verfasserin  |4 aut 
245 1 0 |a Reference-Based Multi-Stage Progressive Restoration for Multi-Degraded Images 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Image restoration (IR) via deep learning has been vigorously studied in recent years. However, due to the ill-posed nature of the problem, it is challenging to recover the high-quality image details from a single distorted input especially when images are corrupted by multiple distortions. In this paper, we propose a multi-stage IR approach for progressive restoration of multi-degraded images via transferring similar edges/textures from the reference image. Our method, called a Reference-based Image Restoration Transformer (Ref-IRT), operates via three main stages. In the first stage, a cascaded U-Transformer network is employed to perform the preliminary recovery of the image. The proposed network consists of two U-Transformer architectures connected by feature fusion of the encoders and decoders, and the residual image is estimated by each U-Transformer in an easy-to-hard and coarse-to-fine fashion to gradually recover the high-quality image. The second and third stages perform texture transfer from a reference image to the preliminarily-recovered target image to further enhance the restoration performance. To this end, a quality-degradation-restoration method is proposed for more accurate content/texture matching between the reference and target images, and a texture transfer/reconstruction network is employed to map the transferred features to the high-quality image. Experimental results tested on three benchmark datasets demonstrate the effectiveness of our model as compared with other state-of-the-art multi-degraded IR methods. Our code and dataset are available at https://vinelab.jp/refmdir/ 
650 4 |a Journal Article 
700 1 |a Yang, Qixue  |e verfasserin  |4 aut 
700 1 |a Chandler, Damon M  |e verfasserin  |4 aut 
700 1 |a Mou, Xuanqin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 01., Seite 4982-4997  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:01  |g pages:4982-4997 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3451939  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 01  |h 4982-4997