HA-TiNet : Learning a Distinctive and General 3D Local Descriptor for Point Cloud Registration

Extracting geometric features from 3D point clouds is widely applied in many tasks, including registration and recognition. We propose a simple yet effective method, termed height-azimuth image based transformation-invariant net (HA-TiNet), to learn a distinctive, general and rotation-invariant 3D l...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 05. Sept.
1. Verfasser: Zhao, Bao (VerfasserIn)
Weitere Verfasser: Liu, Qiang, Wang, Zihan, Chen, Xiaobo, Jia, Zhaohong, Liang, Dong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article