HA-TiNet : Learning a Distinctive and General 3D Local Descriptor for Point Cloud Registration

Extracting geometric features from 3D point clouds is widely applied in many tasks, including registration and recognition. We propose a simple yet effective method, termed height-azimuth image based transformation-invariant net (HA-TiNet), to learn a distinctive, general and rotation-invariant 3D l...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1996. - 31(2025), 9 vom: 01. Aug., Seite 5507-5518
Auteur principal: Zhao, Bao (Auteur)
Autres auteurs: Liu, Qiang, Wang, Zihan, Chen, Xiaobo, Jia, Zhaohong, Liang, Dong
Format: Article en ligne
Langue:English
Publié: 2025
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article