Style Consistency Unsupervised Domain Adaptation Medical Image Segmentation

Unsupervised domain adaptation medical image segmentation is aimed to segment unlabeled target domain images with labeled source domain images. However, different medical imaging modalities lead to large domain shift between their images, in which well-trained models from one imaging modality often...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 06., Seite 4882-4895
1. Verfasser: Chen, Lang (VerfasserIn)
Weitere Verfasser: Bian, Yun, Zeng, Jianbin, Meng, Qingquan, Zhu, Weifang, Shi, Fei, Shao, Chengwei, Chen, Xinjian, Xiang, Dehui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM377232408
003 DE-627
005 20240912233159.0
007 cr uuu---uuuuu
008 240906s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3451934  |2 doi 
028 5 2 |a pubmed24n1531.xml 
035 |a (DE-627)NLM377232408 
035 |a (NLM)39236126 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Lang  |e verfasserin  |4 aut 
245 1 0 |a Style Consistency Unsupervised Domain Adaptation Medical Image Segmentation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.09.2024 
500 |a Date Revised 12.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Unsupervised domain adaptation medical image segmentation is aimed to segment unlabeled target domain images with labeled source domain images. However, different medical imaging modalities lead to large domain shift between their images, in which well-trained models from one imaging modality often fail to segment images from anothor imaging modality. In this paper, to mitigate domain shift between source domain and target domain, a style consistency unsupervised domain adaptation image segmentation method is proposed. First, a local phase-enhanced style fusion method is designed to mitigate domain shift and produce locally enhanced organs of interest. Second, a phase consistency discriminator is constructed to distinguish the phase consistency of domain-invariant features between source domain and target domain, so as to enhance the disentanglement of the domain-invariant and style encoders and removal of domain-specific features from the domain-invariant encoder. Third, a style consistency estimation method is proposed to obtain inconsistency maps from intermediate synthesized target domain images with different styles to measure the difficult regions, mitigate domain shift between synthesized target domain images and real target domain images, and improve the integrity of interested organs. Fourth, style consistency entropy is defined for target domain images to further improve the integrity of the interested organ by the concentration on the inconsistent regions. Comprehensive experiments have been performed with an in-house dataset and a publicly available dataset. The experimental results have demonstrated the superiority of our framework over state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Bian, Yun  |e verfasserin  |4 aut 
700 1 |a Zeng, Jianbin  |e verfasserin  |4 aut 
700 1 |a Meng, Qingquan  |e verfasserin  |4 aut 
700 1 |a Zhu, Weifang  |e verfasserin  |4 aut 
700 1 |a Shi, Fei  |e verfasserin  |4 aut 
700 1 |a Shao, Chengwei  |e verfasserin  |4 aut 
700 1 |a Chen, Xinjian  |e verfasserin  |4 aut 
700 1 |a Xiang, Dehui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 06., Seite 4882-4895  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:06  |g pages:4882-4895 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3451934  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 06  |h 4882-4895