Dynamic Correlation Learning and Regularization for Multi-Label Confidence Calibration

Modern visual recognition models often display overconfidence due to their reliance on complex deep neural networks and one-hot target supervision, resulting in unreliable confidence scores that necessitate calibration. While current confidence calibration techniques primarily address single-label s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 02., Seite 4811-4823
1. Verfasser: Chen, Tianshui (VerfasserIn)
Weitere Verfasser: Wang, Weihang, Pu, Tao, Qin, Jinghui, Yang, Zhijing, Liu, Jie, Lin, Liang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM377095796
003 DE-627
005 20250306144805.0
007 cr uuu---uuuuu
008 240903s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3448248  |2 doi 
028 5 2 |a pubmed25n1256.xml 
035 |a (DE-627)NLM377095796 
035 |a (NLM)39222462 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Tianshui  |e verfasserin  |4 aut 
245 1 0 |a Dynamic Correlation Learning and Regularization for Multi-Label Confidence Calibration 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Modern visual recognition models often display overconfidence due to their reliance on complex deep neural networks and one-hot target supervision, resulting in unreliable confidence scores that necessitate calibration. While current confidence calibration techniques primarily address single-label scenarios, there is a lack of focus on more practical and generalizable multi-label contexts. This paper introduces the Multi-Label Confidence Calibration (MLCC) task, aiming to provide well-calibrated confidence scores in multi-label scenarios. Unlike single-label images, multi-label images contain multiple objects, leading to semantic confusion and further unreliability in confidence scores. Existing single-label calibration methods, based on label smoothing, fail to account for category correlations, which are crucial for addressing semantic confusion, thereby yielding sub-optimal performance. To overcome these limitations, we propose the Dynamic Correlation Learning and Regularization (DCLR) algorithm, which leverages multi-grained semantic correlations to better model semantic confusion for adaptive regularization. DCLR learns dynamic instance-level and prototype-level similarities specific to each category, using these to measure semantic correlations across different categories. With this understanding, we construct adaptive label vectors that assign higher values to categories with strong correlations, thereby facilitating more effective regularization. We establish an evaluation benchmark, re-implementing several advanced confidence calibration algorithms and applying them to leading multi-label recognition (MLR) models for fair comparison. Through extensive experiments, we demonstrate the superior performance of DCLR over existing methods in providing reliable confidence scores in multi-label scenarios 
650 4 |a Journal Article 
700 1 |a Wang, Weihang  |e verfasserin  |4 aut 
700 1 |a Pu, Tao  |e verfasserin  |4 aut 
700 1 |a Qin, Jinghui  |e verfasserin  |4 aut 
700 1 |a Yang, Zhijing  |e verfasserin  |4 aut 
700 1 |a Liu, Jie  |e verfasserin  |4 aut 
700 1 |a Lin, Liang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 02., Seite 4811-4823  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:02  |g pages:4811-4823 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3448248  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 02  |h 4811-4823