Precisely Tunable Instantaneous Carbon Rearrangement Enables Low-Working-Potential Hard Carbon Toward Sodium-Ion Batteries with Enhanced Energy Density

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 44 vom: 16. Nov., Seite e2407369
1. Verfasser: Liu, Junjie (VerfasserIn)
Weitere Verfasser: You, Yiwei, Huang, Ling, Zheng, Qizheng, Sun, Zhefei, Fang, Kai, Sha, Liyuan, Liu, Miao, Zhan, Xiao, Zhao, Jinbao, Han, Ye-Chuang, Zhang, Qiaobao, Chen, Yanan, Wu, Shunqing, Zhang, Li
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Na‐ion battery low‐voltage discharge/charge plateaus metastable hard carbon transient high‐temperature pulse tunable local carbon phases
LEADER 01000caa a22002652 4500
001 NLM377087920
003 DE-627
005 20241101232322.0
007 cr uuu---uuuuu
008 240903s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202407369  |2 doi 
028 5 2 |a pubmed24n1587.xml 
035 |a (DE-627)NLM377087920 
035 |a (NLM)39221669 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Junjie  |e verfasserin  |4 aut 
245 1 0 |a Precisely Tunable Instantaneous Carbon Rearrangement Enables Low-Working-Potential Hard Carbon Toward Sodium-Ion Batteries with Enhanced Energy Density 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a As the preferred anode material for sodium-ion batteries, hard carbon (HC) confronts significant obstacles in providing a long and dominant low-voltage plateau to boost the output energy density of full batteries. The critical challenge lies in precisely enhancing the local graphitization degree to minimize Na+ ad-/chemisorption, while effectively controlling the growth of internal closed nanopores to maximize Na+ filling. Unfortunately, traditional high-temperature preparation methods struggle to achieve both objectives simultaneously. Herein, a transient sintering-involved kinetically-controlled synthesis strategy is proposed that enables the creation of metastable HCs with precisely tunable carbon phases and low discharge/charge voltage plateaus. By optimizing the temperature and width of thermal pulses, the high-throughput screened HCs are characterized by short-range ordered graphitic micro-domains that possess accurate crystallite width and height, as well as appropriately-sized closed nanopores. This advancement realizes HC anodes with significantly prolonged low-voltage plateaus below 0.1 V, with the best sample exhibiting a high plateau capacity of up to 325 mAh g-1. The energy density of the HC||Na3V2(PO4)3 full battery can therefore be increased by 20.7%. Machine learning study explicitly unveils the "carbon phase evolution-electrochemistry" relationship. This work promises disruptive changes to the synthesis, optimization, and commercialization of HC anodes for high-energy-density sodium-ion batteries 
650 4 |a Journal Article 
650 4 |a Na‐ion battery 
650 4 |a low‐voltage discharge/charge plateaus 
650 4 |a metastable hard carbon 
650 4 |a transient high‐temperature pulse 
650 4 |a tunable local carbon phases 
700 1 |a You, Yiwei  |e verfasserin  |4 aut 
700 1 |a Huang, Ling  |e verfasserin  |4 aut 
700 1 |a Zheng, Qizheng  |e verfasserin  |4 aut 
700 1 |a Sun, Zhefei  |e verfasserin  |4 aut 
700 1 |a Fang, Kai  |e verfasserin  |4 aut 
700 1 |a Sha, Liyuan  |e verfasserin  |4 aut 
700 1 |a Liu, Miao  |e verfasserin  |4 aut 
700 1 |a Zhan, Xiao  |e verfasserin  |4 aut 
700 1 |a Zhao, Jinbao  |e verfasserin  |4 aut 
700 1 |a Han, Ye-Chuang  |e verfasserin  |4 aut 
700 1 |a Zhang, Qiaobao  |e verfasserin  |4 aut 
700 1 |a Chen, Yanan  |e verfasserin  |4 aut 
700 1 |a Wu, Shunqing  |e verfasserin  |4 aut 
700 1 |a Zhang, Li  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 44 vom: 16. Nov., Seite e2407369  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:44  |g day:16  |g month:11  |g pages:e2407369 
856 4 0 |u http://dx.doi.org/10.1002/adma.202407369  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 44  |b 16  |c 11  |h e2407369