|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM377087882 |
003 |
DE-627 |
005 |
20241010232404.0 |
007 |
cr uuu---uuuuu |
008 |
240903s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202409697
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1563.xml
|
035 |
|
|
|a (DE-627)NLM377087882
|
035 |
|
|
|a (NLM)39221670
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yang, Yidong
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Stabilization of Cuδ+ Sites Within MnO2 for Superior Urea Electro-Synthesis
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 10.10.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Electrocatalytic C-N coupling between NO3 - and CO2 has emerged as a sustainable route for urea production. However, identifying catalytic active sites and designing efficient electrocatalysts remain significant challenges. Herein, the synthesis of Cu-doped MnO2 nanotube (denoted as Cu-MnO2) with stable Cuδ+-oxygen vacancies (Ovs)-Mn3+ dual sites is reported. Compared with pure MnO2, Cuδ+ doping can effectively enhance urea production performance in the co-reduction of CO2 and NO3 -. Thus, Cu-MnO2 catalyst exhibits a maximum Faradaic efficiency (FE) of 54.7% and the highest yield rate of 116.7 mmol h-1 gcat. -1 in a flow cell. Remarkably, the urea yield rate remains over 78 mmol h-1 gcat. -1 across a wide potential range. Further experimental and theoretical results elucidate the unique role of Cu-MnO2 solid-solution for stabilizing Cuδ+ sites in Cuδ+-Ovs-Mn3+, endowing the catalyst with superior structural and electrochemical stabilities. This thermodynamically promotes urea formation and kinetically lowers the energy barrier of C-N coupling
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a C‐N coupling
|
650 |
|
4 |
|a dual sites
|
650 |
|
4 |
|a stable Cuδ+ species
|
650 |
|
4 |
|a urea synthesis
|
700 |
1 |
|
|a Wu, Guanzheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiang, Jiadi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Wuyong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Sijia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Rui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Fukang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Du, Aijun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dai, Lei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mao, Xin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qin, Qing
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 41 vom: 15. Okt., Seite e2409697
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:41
|g day:15
|g month:10
|g pages:e2409697
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202409697
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 41
|b 15
|c 10
|h e2409697
|