The Effect of Organic Semiconductor Electron Affinity on Preventing Parasitic Oxidation Reactions Limiting Performance of n-Type Organic Electrochemical Transistors

© 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 44 vom: 15. Nov., Seite e2403911
1. Verfasser: Alsufyani, Maryam (VerfasserIn)
Weitere Verfasser: Moss, Benjamin, Tait, Claudia E, Myers, William K, Shahi, Maryam, Stewart, Katherine, Zhao, Xiaolei, Rashid, Reem B, Meli, Dilara, Wu, Ruiheng, Paulsen, Bryan D, Thorley, Karl, Lin, Yuanbao, Combe, Craig, Kniebe-Evans, Charlie, Inal, Sahika, Jeong, Sang Young, Woo, Han Young, Ritchie, Grant, Kim, Ji-Seon, Rivnay, Jonathan, Paterson, Alexandra, Durrant, James R, McCulloch, Iain
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article electron affinity in situ electrochemical resonant Raman spectroscopy organic electrochemical transistors semiconducting polymers time‐resolved spectroelectrochemistry
LEADER 01000caa a22002652 4500
001 NLM377086584
003 DE-627
005 20241101232322.0
007 cr uuu---uuuuu
008 240902s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202403911  |2 doi 
028 5 2 |a pubmed24n1587.xml 
035 |a (DE-627)NLM377086584 
035 |a (NLM)39221539 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Alsufyani, Maryam  |e verfasserin  |4 aut 
245 1 4 |a The Effect of Organic Semiconductor Electron Affinity on Preventing Parasitic Oxidation Reactions Limiting Performance of n-Type Organic Electrochemical Transistors 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. 
520 |a A key challenge in the development of organic mixed ionic-electronic conducting materials (OMIEC) for high performance electrochemical transistors is their stable performance in ambient. When operating in aqueous electrolyte, potential reactions of the electrochemically injected electrons with air and water could hinder their persistence, leading to a reduction in charge transport. Here, the impact of deepening the LUMO energy level of a series of electron-transporting semiconducting polymers is evaluated, and subsequently rendering the most common oxidation processes of electron polarons thermodynamically unfavorable, on organic electrochemical transistors (OECTs) performance. Employing time resolved spectroelectrochemistry with three analogous polymers having varying electron affinities (EA), it is found that an EA below the thermodynamic threshold for oxidation of its electron polarons by oxygen significantly improves electron transport and lifetime in air. A polymer with a sufficiently large EA and subsequent thermodynamically unfavorable oxidation of electron polarons is reported, which is used as the semiconducting layer in an OECT, in its neutral and N-DMBI doped form, resulting in an excellent and air-stable OECT performance. These results show a general design methodology to avoid detrimental parasitic reactions under ambient conditions, and the benefits that arise in electrical performance 
650 4 |a Journal Article 
650 4 |a electron affinity 
650 4 |a in situ electrochemical resonant Raman spectroscopy 
650 4 |a organic electrochemical transistors 
650 4 |a semiconducting polymers 
650 4 |a time‐resolved spectroelectrochemistry 
700 1 |a Moss, Benjamin  |e verfasserin  |4 aut 
700 1 |a Tait, Claudia E  |e verfasserin  |4 aut 
700 1 |a Myers, William K  |e verfasserin  |4 aut 
700 1 |a Shahi, Maryam  |e verfasserin  |4 aut 
700 1 |a Stewart, Katherine  |e verfasserin  |4 aut 
700 1 |a Zhao, Xiaolei  |e verfasserin  |4 aut 
700 1 |a Rashid, Reem B  |e verfasserin  |4 aut 
700 1 |a Meli, Dilara  |e verfasserin  |4 aut 
700 1 |a Wu, Ruiheng  |e verfasserin  |4 aut 
700 1 |a Paulsen, Bryan D  |e verfasserin  |4 aut 
700 1 |a Thorley, Karl  |e verfasserin  |4 aut 
700 1 |a Lin, Yuanbao  |e verfasserin  |4 aut 
700 1 |a Combe, Craig  |e verfasserin  |4 aut 
700 1 |a Kniebe-Evans, Charlie  |e verfasserin  |4 aut 
700 1 |a Inal, Sahika  |e verfasserin  |4 aut 
700 1 |a Jeong, Sang Young  |e verfasserin  |4 aut 
700 1 |a Woo, Han Young  |e verfasserin  |4 aut 
700 1 |a Ritchie, Grant  |e verfasserin  |4 aut 
700 1 |a Kim, Ji-Seon  |e verfasserin  |4 aut 
700 1 |a Rivnay, Jonathan  |e verfasserin  |4 aut 
700 1 |a Paterson, Alexandra  |e verfasserin  |4 aut 
700 1 |a Durrant, James R  |e verfasserin  |4 aut 
700 1 |a McCulloch, Iain  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 44 vom: 15. Nov., Seite e2403911  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:44  |g day:15  |g month:11  |g pages:e2403911 
856 4 0 |u http://dx.doi.org/10.1002/adma.202403911  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 44  |b 15  |c 11  |h e2403911