Fuzzy logic-based prediction and parametric optimizing using particle swarm optimization for performance improvement in pyramid solar still

© 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 90(2024), 4 vom: 31. Aug., Seite 1321-1337
1. Verfasser: Senthilkumar, N (VerfasserIn)
Weitere Verfasser: Yuvaperiyasamy, M, Deepanraj, B, Sabari, K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article TOPSIS distillate productivity fuzzy rules paraffin wax silver nanoparticles Silver 3M4G523W1G
LEADER 01000naa a22002652 4500
001 NLM377028630
003 DE-627
005 20240902235142.0
007 cr uuu---uuuuu
008 240902s2024 xx |||||o 00| ||eng c
024 7 |a 10.2166/wst.2024.277  |2 doi 
028 5 2 |a pubmed24n1520.xml 
035 |a (DE-627)NLM377028630 
035 |a (NLM)39215741 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Senthilkumar, N  |e verfasserin  |4 aut 
245 1 0 |a Fuzzy logic-based prediction and parametric optimizing using particle swarm optimization for performance improvement in pyramid solar still 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.08.2024 
500 |a Date Revised 31.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/). 
520 |a The primary objective of this study is to develop a robust model that employs a fuzzy logic interface (FL) and particle swarm optimization (PSO) to forecast the optimal parameters of a pyramid solar still (PSS). The model considers a range of environmental variables and varying levels of silver nanoparticles (Ag) mixed with paraffin wax, serving as a phase change material (PCM). The study focuses on three key factors: solar intensity ranging from 350 to 950 W/m2, water depth varying between 4 and 8 cm, and silver (Ag) nanoparticle concentration ranging from 0.5 to 1.5% and corresponding output responses are productivity (P), glass temperature (Tg), and basin water temperature (Tw). The experimental design is based on Taguchi's L9 orthogonal array. A technique for ordering preference by similarity to the ideal solution (TOPSIS) is utilized to optimize the process parameters of PSS. Incorporating a fuzzy inference system (FIS) aims to minimize the uncertainty within the system, and the particle swarm optimization algorithm is employed to fine-tune the optimal settings. These methodologies are employed to forecast the optimal conditions required to enhance the productivity of the PSS 
650 4 |a Journal Article 
650 4 |a TOPSIS 
650 4 |a distillate productivity 
650 4 |a fuzzy rules 
650 4 |a paraffin wax 
650 4 |a silver nanoparticles 
650 7 |a Silver  |2 NLM 
650 7 |a 3M4G523W1G  |2 NLM 
700 1 |a Yuvaperiyasamy, M  |e verfasserin  |4 aut 
700 1 |a Deepanraj, B  |e verfasserin  |4 aut 
700 1 |a Sabari, K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 90(2024), 4 vom: 31. Aug., Seite 1321-1337  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnns 
773 1 8 |g volume:90  |g year:2024  |g number:4  |g day:31  |g month:08  |g pages:1321-1337 
856 4 0 |u http://dx.doi.org/10.2166/wst.2024.277  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 90  |j 2024  |e 4  |b 31  |c 08  |h 1321-1337