Computational Investigation on Cr-Doped Sc2CO2 MXene under Strain for Electronic Properties, Quantum Capacitance, and Photocatalytic Activity
Sc2CO2 MXene has potential applications in energy storage and optoelectronics due to its superior structure and excellent properties. The electronic properties, quantum capacitance, and photocatalytic activity of Cr-doped Sc2CO2 under strain are studied by the density functional theory. Cr doping ma...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1999. - 40(2024), 37 vom: 17. Sept., Seite 19619-19630 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Sc2CO2 MXene has potential applications in energy storage and optoelectronics due to its superior structure and excellent properties. The electronic properties, quantum capacitance, and photocatalytic activity of Cr-doped Sc2CO2 under strain are studied by the density functional theory. Cr doping makes the system produce magnetism. The spin-down states of Sc2CO2-Cr under strain are direct semiconductors, while their spin-up states are indirect semiconductors. Sc2CO2-Cr under +5, -5, -3, and -2% strains in an aqueous system are suitable for cathode material. A large voltage drastically modulates the type of electrode materials. Sc2CO2-Cr under strains from 0 to +2% can perform the oxygen evolution reaction at an alkaline environment, while the Sc2CO2-Cr system under strain is a good for CO2 photocatalysis at pH 0 and 7 |
---|---|
Beschreibung: | Date Revised 17.09.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.4c02282 |