3D Soft Architectures for Stretchable Thermoelectric Wearables with Electrical Self-Healing and Damage Tolerance

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 49 vom: 28. Dez., Seite e2407073
1. Verfasser: Han, Youngshang (VerfasserIn)
Weitere Verfasser: Tetik, Halil, Malakooti, Mohammad H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 3D printing liquid metal self‐healing stretchable electronics thermoelectric
LEADER 01000caa a22002652 4500
001 NLM376997699
003 DE-627
005 20241206231948.0
007 cr uuu---uuuuu
008 240902s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202407073  |2 doi 
028 5 2 |a pubmed24n1623.xml 
035 |a (DE-627)NLM376997699 
035 |a (NLM)39212649 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Han, Youngshang  |e verfasserin  |4 aut 
245 1 0 |a 3D Soft Architectures for Stretchable Thermoelectric Wearables with Electrical Self-Healing and Damage Tolerance 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.12.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a Flexible thermoelectric devices (TEDs) exhibit adaptability to curved surfaces, holding significant potential for small-scale power generation and thermal management. However, they often compromise stretchability, energy conversion, or robustness, thus limiting their applications. Here, the implementation of 3D soft architectures, multifunctional composites, self-healing liquid metal conductors, and rigid semiconductors is introduced to overcome these challenges. These TEDs are extremely stretchable, functioning at strain levels as high as 230%. Their unique design, verified through multiphysics simulations, results in a considerably high power density of 115.4 µW cm⁻2 at a low-temperature gradient of 10 °C. This is achieved through 3D printing multifunctional elastomers and examining the effects of three distinct thermal insulation infill ratios (0%, 12%, and 100%) on thermoelectric energy conversion and structural integrity. The engineered structure is lighter and effectively maintains the temperature gradient across the thermoelectric semiconductors, thereby resulting in higher output voltage and improved heating and cooling performance. Furthermore, these thermoelectric generators show remarkable damage tolerance, remaining fully functional even after multiple punctures and 2000 stretching cycles at 50% strain. When integrated with a 3D-printed heatsink, they can power wearable sensors, charge batteries, and illuminate LEDs by scavenging body heat at room temperature, demonstrating their application as self-sustainable electronics 
650 4 |a Journal Article 
650 4 |a 3D printing 
650 4 |a liquid metal 
650 4 |a self‐healing 
650 4 |a stretchable electronics 
650 4 |a thermoelectric 
700 1 |a Tetik, Halil  |e verfasserin  |4 aut 
700 1 |a Malakooti, Mohammad H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 49 vom: 28. Dez., Seite e2407073  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:49  |g day:28  |g month:12  |g pages:e2407073 
856 4 0 |u http://dx.doi.org/10.1002/adma.202407073  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 49  |b 28  |c 12  |h e2407073