How accurate can Kohn-Sham density functional be for both main-group and transition metal reactions

© 2024 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 45(2024), 32 vom: 15. Nov., Seite 2878-2884
1. Verfasser: Wang, Yizhen (VerfasserIn)
Weitere Verfasser: Zhang, Igor Ying, Xu, Xin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article DFT REST double hybrid machine‐learning strong‐correlation
LEADER 01000caa a22002652 4500
001 NLM376990945
003 DE-627
005 20241114232647.0
007 cr uuu---uuuuu
008 240902s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27488  |2 doi 
028 5 2 |a pubmed24n1600.xml 
035 |a (DE-627)NLM376990945 
035 |a (NLM)39211974 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Yizhen  |e verfasserin  |4 aut 
245 1 0 |a How accurate can Kohn-Sham density functional be for both main-group and transition metal reactions 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley Periodicals LLC. 
520 |a Achieving chemical accuracy in describing reactions involving both main-group elements and transition metals poses a substantial challenge for density functional approximations (DFAs), primarily due to the significantly different behaviors for electrons moving in the s,p-orbitals or in the d,f-orbitals. MOR41, a representative dataset of transition metal chemistry, has highlighted the PWPB95-D3(BJ) functional, a B2PLYP-type doubly hybrid (bDH) approximation equipped with an empirical dispersion correction, as the leading functional thus far (Dohm et al., J Chem Theory Comput 2018;14: 2596-2608). However, this functional is not among the top bDH methods for main-group chemistry (Goerigk et al., Phys Chem Chem Phys. 2017;19: 32184). Conversely, bDH methods such as DSD-BLYP-D3, proficient in main-group chemistry, often falter for transition metal chemistry. Herein, taking advantage of the home-made Rust-based Electronic-Structure Toolkits, we examine a suite of XYG3-type doubly hybrid (xDH) methods. We confirm that the trade-off in descriptive accuracy between main-group and transition metal systems persists within the realm of perturbation theory (PT2)-based xDH methods. Notably, however, our study ushers in a pivotal advance with the recently proposed renormalized xDH method, R-xDH7-SCC15. This method not only distinguishes itself among the elite methods for main-group chemistry, but also achieves an unprecedented accuracy for the MOR41 dataset, outperforming all other reported DFAs. The efficacy of R-xDH7-SCC15 stems from the successful integration of a renormalized PT2 correlation model (rPT2) and a machine-learning strong-correlation correction (SCC15), marking a significant step forward in the realm of computational chemistry 
650 4 |a Journal Article 
650 4 |a DFT 
650 4 |a REST 
650 4 |a double hybrid 
650 4 |a machine‐learning 
650 4 |a strong‐correlation 
700 1 |a Zhang, Igor Ying  |e verfasserin  |4 aut 
700 1 |a Xu, Xin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 45(2024), 32 vom: 15. Nov., Seite 2878-2884  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:45  |g year:2024  |g number:32  |g day:15  |g month:11  |g pages:2878-2884 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27488  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2024  |e 32  |b 15  |c 11  |h 2878-2884