One-Dimensional Single-Crystal Mesoporous TiO2 Supported CuW6O24 Clusters as Photocatalytic Cascade Nanoreactor for Boosting Reduction of CO2 to CH4

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 44 vom: 16. Nov., Seite e2409188
1. Verfasser: Zhang, Jiaming (VerfasserIn)
Weitere Verfasser: Shi, Duoxin, Yang, Junyu, Duan, Linlin, Zhang, Pengfei, Gao, Mingbin, He, Jinlu, Gu, Yulan, Lan, Kun, Zhang, Jiangwei, Liu, Jian, Zhao, Dongyuan, Ma, Yuzhu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article cascade nanoreactor mesoporous materials one‐dimensional (1‐D) photocatalytic CO2 reduction single‐crystal
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Constructing nanoreactors with multiple active sites in well-defined crystalline mesoporous frameworks is an effective strategy for tailoring photocatalysts to address the challenging of CO2 reduction. Herein, one-dimensional (1-D) mesoporous single-crystal TiO2 nanorod (MS-TiO2-NRs, ≈110 nm in length, high surface area of 117 m2 g-1, and uniform mesopores of ≈7.0 nm) based nanoreactors are prepared via a droplet interface directed-assembly strategy under mild condition. By regulating the interfacial energy, the 1-D mesoporous single-crystal TiO2 can be further tuned to polycrystalline fan- and flower-like morphologies with different oxygen vacancies (Ov). The integration of single-crystal nature and mesopores with exposed oxygen vacancies make the rod-like TiO2 nanoreactors exhibit a high-photocatalytic CO2 reduction selectivity to CO (95.1%). Furthermore, photocatalytic cascade nanoreactors by in situ incorporation of CuW6O24 (W-Cu) clusters onto MS-TiO2-NRs via Ov are designed and synthesized, which improved the CO2 adsorption capacity and achieved two-step CO2-CO-CH4 photoreduction. The second step CO-to-CH4 reaction induced by W-Cu sites ensures a high generation rate of CH4 (420.4 µmol g-1 h-1), along with an enhanced CH4 selectivity (≈94.3% electron selectivity). This research provides a platform for the design of mesoporous single-crystal materials, which potentially extends to a range of functional ceramics and semiconductors for various applications
Beschreibung:Date Revised 01.11.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202409188