An algorithm for very high pressure molecular dynamics simulations
© 2024 The Author(s). Journal of Computational Chemistry published by Wiley Periodicals LLC.
Publié dans: | Journal of computational chemistry. - 1984. - 45(2024), 32 vom: 15. Dez., Seite 2848-2861 |
---|---|
Auteur principal: | |
Autres auteurs: | , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2024
|
Accès à la collection: | Journal of computational chemistry |
Sujets: | Journal Article barostat butadiene chemistry under extremely high pressures molecular dynamics |
Résumé: | © 2024 The Author(s). Journal of Computational Chemistry published by Wiley Periodicals LLC. We describe a method to run simulations of ground or excited state dynamics under extremely high pressures. The method is based on the introduction of a fictitious ideal gas that exerts the required pressure on a molecular sample and is therefore called XP-GAS (eXtreme Pressure by Gas Atoms in a Sphere). The algorithm is most suitable for approximately spherical clusters of molecules described by quantum chemistry methods, Molecular Mechanics or mixed QM/MM approaches. We compare the results obtained by the algorithm here presented and by the XP-PCM approach, based on a continuum description of the environment. As a test case, we study the conformational dynamics of 1,3-butadiene either as an isolated molecule ("naked" butadiene) or embedded in a cluster of argon atoms, under pressures up to 15 GPa. Overall, our results show that the XP-GAS QM/MM simulation method is in good agreement with the XP-PCM QM/Continuum model (Cammi model) in describing the effect of the pressure on static properties as the equilibrium geometry of butadiene in the ground state. Furthermore, the comparison of XP-GAS simulations with naked butadiene and butadiene in argon shows the importance, for XP-GAS and related methods, of a realistic representation of the medium in modelling pressure effects |
---|---|
Description: | Date Revised 08.11.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1096-987X |
DOI: | 10.1002/jcc.27461 |