Gaseous Object Detection

Object detection, a fundamental and challenging problem in computer vision, has experienced rapid development due to the effectiveness of deep learning. The current objects to be detected are mostly rigid solid substances with apparent and distinct visual characteristics. In this paper, we endeavor...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 26. Dez., Seite 10715-10731
Auteur principal: Zhou, Kailai (Auteur)
Autres auteurs: Wang, Yibo, Lv, Tao, Shen, Qiu, Cao, Xun
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM376736224
003 DE-627
005 20250306135932.0
007 cr uuu---uuuuu
008 240827s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3449994  |2 doi 
028 5 2 |a pubmed25n1254.xml 
035 |a (DE-627)NLM376736224 
035 |a (NLM)39186417 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Kailai  |e verfasserin  |4 aut 
245 1 0 |a Gaseous Object Detection 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Object detection, a fundamental and challenging problem in computer vision, has experienced rapid development due to the effectiveness of deep learning. The current objects to be detected are mostly rigid solid substances with apparent and distinct visual characteristics. In this paper, we endeavor on a scarcely explored task named Gaseous Object Detection (GOD), which is undertaken to explore whether the object detection techniques can be extended from solid substances to gaseous substances. Nevertheless, the gas exhibits significantly different visual characteristics: 1) saliency deficiency, 2) arbitrary and ever-changing shapes, 3) lack of distinct boundaries. To facilitate the study on this challenging task, we construct a GOD-Video dataset comprising 600 videos (141,017 frames) that cover various attributes with multiple types of gases. A comprehensive benchmark is established based on this dataset, allowing for a rigorous evaluation of frame-level and video-level detectors. Deduced from the Gaussian dispersion model, the physics-inspired Voxel Shift Field (VSF) is designed to model geometric irregularities and ever-changing shapes in potential 3D space. By integrating VSF into Faster RCNN, the VSF RCNN serves as a simple but strong baseline for gaseous object detection. Our work aims to attract further research into this valuable albeit challenging area 
650 4 |a Journal Article 
700 1 |a Wang, Yibo  |e verfasserin  |4 aut 
700 1 |a Lv, Tao  |e verfasserin  |4 aut 
700 1 |a Shen, Qiu  |e verfasserin  |4 aut 
700 1 |a Cao, Xun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 26. Dez., Seite 10715-10731  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:26  |g month:12  |g pages:10715-10731 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3449994  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 26  |c 12  |h 10715-10731