Relation Knowledge Distillation by Auxiliary Learning for Object Detection

Balancing the trade-off between accuracy and speed for obtaining higher performance without sacrificing the inference time is a challenging topic for object detection task. Knowledge distillation, which serves as a kind of model compression techniques, provides a potential and feasible way to handle...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 26., Seite 4796-4810
1. Verfasser: Wang, Hao (VerfasserIn)
Weitere Verfasser: Jia, Tong, Wang, Qilong, Zuo, Wangmeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM376736194
003 DE-627
005 20250306135932.0
007 cr uuu---uuuuu
008 240827s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3445740  |2 doi 
028 5 2 |a pubmed25n1254.xml 
035 |a (DE-627)NLM376736194 
035 |a (NLM)39186414 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Hao  |e verfasserin  |4 aut 
245 1 0 |a Relation Knowledge Distillation by Auxiliary Learning for Object Detection 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Balancing the trade-off between accuracy and speed for obtaining higher performance without sacrificing the inference time is a challenging topic for object detection task. Knowledge distillation, which serves as a kind of model compression techniques, provides a potential and feasible way to handle above efficiency and effectiveness issue through transferring the dark knowledge from the sophisticated teacher detector to the simple student one. Despite demonstrating promising solutions to make harmonies between accuracy and speed, current knowledge distillation for object detection methods still suffer from two limitations. Firstly, most of the methods are inherited or refereed from the frameworks in image classification task, and deploy an implicit manner by imitating or constraining the features from the intermediate layers or the output predictions between the teacher and student models. While little consideration has been raised to the intrinsic relevance of the classification and localization predictions in object detection task. Besides, these methods fail to investigate the relationship between detection and distillation tasks in knowledge distillation pipeline, and they train the whole network by simply integrating losses from these two different tasks through hand-crafted designation parameters. For addressing the aforementioned issues, we propose a novel Relation Knowledge Distillation by Auxiliary Learning for Object Detection (ReAL) method in this paper. Specifically, we first design a prediction relation distillation module which makes the student model directly mimic the output predictions from the teacher one, and conduct self and mutual relation distillation losses to excavate the relation information between teacher and student models. Moreover, for better devolving into the relationship between different tasks in distillation pipeline, we introduce the auxiliary learning into knowledge distillation for object detection and develop a dynamic weight adaptation strategy. Through regarding detection task as primary task and treating distillation task as auxiliary task in auxiliary learning framework, we dynamically adjust and regularize the corresponding weights of the losses for these tasks during the training process. Experiments on MS COCO dataset are conducted using various detector combinations of teacher and student models and the results show that our proposed ReAL can achieve obvious improvement on different distillation model configurations, while performing favorably against state-of-the-arts 
650 4 |a Journal Article 
700 1 |a Jia, Tong  |e verfasserin  |4 aut 
700 1 |a Wang, Qilong  |e verfasserin  |4 aut 
700 1 |a Zuo, Wangmeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 26., Seite 4796-4810  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:26  |g pages:4796-4810 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3445740  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 26  |h 4796-4810