Ammonium enhances rice resistance to Magnaporthe oryzae through H2O2 accumulation
Copyright © 2024. Published by Elsevier Masson SAS.
Veröffentlicht in: | Plant physiology and biochemistry : PPB. - 1991. - 215(2024) vom: 22. Sept., Seite 109058 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Plant physiology and biochemistry : PPB |
Schlagworte: | Journal Article Hydrogen peroxide Magnaporthe oryzae Nitrogen Plant-pathogen interactions Rice Hydrogen Peroxide BBX060AN9V Ammonium Compounds Plant Proteins |
Zusammenfassung: | Copyright © 2024. Published by Elsevier Masson SAS. Nitrogen (N) is essential for the physiological processes of plants. However, the specific mechanisms by which different nitrogen forms influence rice blast pathogenesis remain poorly understood. This study used hydroponic assays to explore how ammonium (NH4+) and nitrate (NO3-) affect rice after inoculation with Magnaporthe oryzae (M. oryzae). The results showed that NH4+, compared to NO3-, significantly reduced disease severity, fungal growth, fungal hyphae number, the expansion capacity of infectious hyphae, and disease-related loss of photosynthesis. Additionally, NH4+ enhanced the expression of defense-related genes, including OsPBZ1, OsCHT1, OsPR1a, and OsPR10. NH4+-treated rice also exhibited higher hydrogen peroxide (H2O2) accumulation and increased antioxidant enzyme activities. Moreover, susceptibility to rice blast disease increased when H2O2 was scavenged, while a reduction in susceptibility was observed with the application of exogenous H2O2. These results suggest that ammonium enhances rice resistance to M. oryzae, potentially through H2O2 accumulation. The findings provide valuable insights into how different nitrogen forms affect plant immunity in rice, which is crucial for controlling rice blast and ensuring stable food production |
---|---|
Beschreibung: | Date Completed 14.09.2024 Date Revised 14.09.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1873-2690 |
DOI: | 10.1016/j.plaphy.2024.109058 |