Tuning the Spin Transition and Carrier Type in Rare-Earth Cobaltates via Compositional Complexity

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2024) vom: 23. Aug., Seite e2406885
1. Verfasser: Zhang, Alan (VerfasserIn)
Weitere Verfasser: Oh, Sangheon, Choi, Byoung Ki, Rotenberg, Eli, Brown, Timothy D, Spataru, Catalin D, Kinigstein, Eli, Guo, Jinghua, Sugar, Joshua D, Salagre, Elena, Mascaraque, Arantzazu, Michel, Enrique G, Shad, Alison C, Zhu, Jacklyn, Witman, Matthew D, Kumar, Suhas, Talin, A Alec, Fuller, Elliot J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article cobaltate high entropy oxide spin transition
LEADER 01000naa a22002652 4500
001 NLM376675047
003 DE-627
005 20240825233012.0
007 cr uuu---uuuuu
008 240825s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202406885  |2 doi 
028 5 2 |a pubmed24n1512.xml 
035 |a (DE-627)NLM376675047 
035 |a (NLM)39180279 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Alan  |e verfasserin  |4 aut 
245 1 0 |a Tuning the Spin Transition and Carrier Type in Rare-Earth Cobaltates via Compositional Complexity 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a There is growing interest in material candidates with properties that can be engineered beyond traditional design limits. Compositionally complex oxides (CCO), often called high entropy oxides, are excellent candidates, wherein a lattice site shares more than four cations, forming single-phase solid solutions with unique properties. However, the nature of compositional complexity in dictating properties remains unclear, with characteristics that are difficult to calculate from first principles. Here, compositional complexity is demonstrated as a tunable parameter in a spin-transition oxide semiconductor La1- x(Nd, Sm, Gd, Y)x/4CoO3, by varying the population x of rare earth cations over 0.00≤ x≤ 0.80. Across the series, increasing complexity is revealed to systematically improve crystallinity, increase the amount of electron versus hole carriers, and tune the spin transition temperature and on-off ratio. At high a population (x = 0.8), Seebeck measurements indicate a crossover from hole-majority to electron-majority conduction without the introduction of conventional electron donors, and tunable complexity is proposed as new method to dope semiconductors. First principles calculations combined with angle resolved photoemission reveal an unconventional doping mechanism of lattice distortions leading to asymmetric hole localization over electrons. Thus, tunable complexity is demonstrated as a facile knob to improve crystallinity, tune electronic transitions, and to dope semiconductors beyond traditional means 
650 4 |a Journal Article 
650 4 |a cobaltate 
650 4 |a high entropy 
650 4 |a oxide 
650 4 |a spin transition 
700 1 |a Oh, Sangheon  |e verfasserin  |4 aut 
700 1 |a Choi, Byoung Ki  |e verfasserin  |4 aut 
700 1 |a Rotenberg, Eli  |e verfasserin  |4 aut 
700 1 |a Brown, Timothy D  |e verfasserin  |4 aut 
700 1 |a Spataru, Catalin D  |e verfasserin  |4 aut 
700 1 |a Kinigstein, Eli  |e verfasserin  |4 aut 
700 1 |a Guo, Jinghua  |e verfasserin  |4 aut 
700 1 |a Sugar, Joshua D  |e verfasserin  |4 aut 
700 1 |a Salagre, Elena  |e verfasserin  |4 aut 
700 1 |a Mascaraque, Arantzazu  |e verfasserin  |4 aut 
700 1 |a Michel, Enrique G  |e verfasserin  |4 aut 
700 1 |a Shad, Alison C  |e verfasserin  |4 aut 
700 1 |a Zhu, Jacklyn  |e verfasserin  |4 aut 
700 1 |a Witman, Matthew D  |e verfasserin  |4 aut 
700 1 |a Kumar, Suhas  |e verfasserin  |4 aut 
700 1 |a Talin, A Alec  |e verfasserin  |4 aut 
700 1 |a Fuller, Elliot J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2024) vom: 23. Aug., Seite e2406885  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g year:2024  |g day:23  |g month:08  |g pages:e2406885 
856 4 0 |u http://dx.doi.org/10.1002/adma.202406885  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2024  |b 23  |c 08  |h e2406885