|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM376674806 |
003 |
DE-627 |
005 |
20240825233011.0 |
007 |
cr uuu---uuuuu |
008 |
240825s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202405615
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1512.xml
|
035 |
|
|
|a (DE-627)NLM376674806
|
035 |
|
|
|a (NLM)39180271
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wu, Wenjun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Realization of a 2D Lieb Lattice in a Metal-Inorganic Framework with Partial Flat Bands and Topological Edge States
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 24.08.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Flat bands and Dirac cones in materials are the source of the exotic electronic and topological properties. The Lieb lattice is expected to host these electronic structures, arising from quantum destructive interference. Nevertheless, the experimental realization of a 2D Lieb lattice remained challenging to date due to its intrinsic structural instability. After computationally designing a Platinum-Phosphorus (Pt-P) Lieb lattice, it has successfully overcome its structural instability and synthesized on a gold substrate via molecular beam epitaxy. Low-temperature scanning tunneling microscopy and spectroscopy verify the Lieb lattice's morphology and electronic flat bands. Furthermore, topological Dirac edge states stemming from pronounced spin-orbit coupling induced by heavy Pt atoms are predicted. These findings convincingly open perspectives for creating metal-inorganic framework-based atomic lattices, offering prospects for strongly correlated phases interplayed with topology
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a dirac edge states
|
650 |
|
4 |
|a flat bands
|
650 |
|
4 |
|a lieb lattice
|
650 |
|
4 |
|a metal–inorganic framework
|
650 |
|
4 |
|a scanning tunneling microscopy
|
700 |
1 |
|
|a Sun, Shuo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tang, Chi Sin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Jing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Yu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Lingfeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cai, Chuanbing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhong, Jianxin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Milošević, Milorad V
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wee, Andrew T S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yin, Xinmao
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g (2024) vom: 23. Aug., Seite e2405615
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g year:2024
|g day:23
|g month:08
|g pages:e2405615
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202405615
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2024
|b 23
|c 08
|h e2405615
|