Line-Based 6-DoF Object Pose Estimation and Tracking With an Event Camera

Pose estimation and tracking of objects is a fundamental application in 3D vision. Event cameras possess remarkable attributes such as high dynamic range, low latency, and resilience against motion blur, which enables them to address challenging high dynamic range scenes or high-speed motion. These...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 23., Seite 4765-4780
1. Verfasser: Liu, Zibin (VerfasserIn)
Weitere Verfasser: Guan, Banglei, Shang, Yang, Yu, Qifeng, Kneip, Laurent
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM37665306X
003 DE-627
005 20250306134815.0
007 cr uuu---uuuuu
008 240824s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3445736  |2 doi 
028 5 2 |a pubmed25n1254.xml 
035 |a (DE-627)NLM37665306X 
035 |a (NLM)39178088 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Zibin  |e verfasserin  |4 aut 
245 1 0 |a Line-Based 6-DoF Object Pose Estimation and Tracking With an Event Camera 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Pose estimation and tracking of objects is a fundamental application in 3D vision. Event cameras possess remarkable attributes such as high dynamic range, low latency, and resilience against motion blur, which enables them to address challenging high dynamic range scenes or high-speed motion. These features make event cameras an ideal complement over standard cameras for object pose estimation. In this work, we propose a line-based robust pose estimation and tracking method for planar or non-planar objects using an event camera. Firstly, we extract object lines directly from events, then provide an initial pose using a globally-optimal Branch-and-Bound approach, where 2D-3D line correspondences are not known in advance. Subsequently, we utilize event-line matching to establish correspondences between 2D events and 3D models. Furthermore, object poses are refined and continuously tracked by minimizing event-line distances. Events are assigned different weights based on these distances, employing robust estimation algorithms. To evaluate the precision of the proposed methods in object pose estimation and tracking, we have devised and established an event-based moving object dataset. Compared against state-of-the-art methods, the robustness and accuracy of our methods have been validated both on synthetic experiments and the proposed dataset. The source code is available at https://github.com/Zibin6/LOPET 
650 4 |a Journal Article 
700 1 |a Guan, Banglei  |e verfasserin  |4 aut 
700 1 |a Shang, Yang  |e verfasserin  |4 aut 
700 1 |a Yu, Qifeng  |e verfasserin  |4 aut 
700 1 |a Kneip, Laurent  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 23., Seite 4765-4780  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:23  |g pages:4765-4780 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3445736  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 23  |h 4765-4780