Learning to Generate Parameters of ConvNets for Unseen Image Data

Typical Convolutional Neural Networks (ConvNets) depend heavily on large amounts of image data and resort to an iterative optimization algorithm (e.g., SGD or Adam) to learn network parameters, making training very time- and resource-intensive. In this paper, we propose a new training paradigm and f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 06., Seite 5577-5592
1. Verfasser: Wang, Shiye (VerfasserIn)
Weitere Verfasser: Feng, Kaituo, Li, Changsheng, Yuan, Ye, Wang, Guoren
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article