Joint Under-Sampling Pattern and Dual-Domain Reconstruction for Accelerating Multi-Contrast MRI

Multi-Contrast Magnetic Resonance Imaging (MCMRI) utilizes the short-time reference image to facilitate the reconstruction of the long-time target one, providing a new solution for fast MRI. Although various methods have been proposed, they still have certain limitations. 1) existing methods featuri...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 03., Seite 4686-4701
1. Verfasser: Lei, Pengcheng (VerfasserIn)
Weitere Verfasser: Hu, Le, Fang, Faming, Zhang, Guixu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Multi-Contrast Magnetic Resonance Imaging (MCMRI) utilizes the short-time reference image to facilitate the reconstruction of the long-time target one, providing a new solution for fast MRI. Although various methods have been proposed, they still have certain limitations. 1) existing methods featuring the preset under-sampling patterns give rise to redundancy between multi-contrast images and limit their model performance; 2) most methods focus on the information in the image domain, prior knowledge in the k-space domain has not been fully explored; and 3) most networks are manually designed and lack certain physical interpretability. To address these issues, we propose a joint optimization of the under-sampling pattern and a deep-unfolding dual-domain network for accelerating MCMRI. Firstly, to reduce the redundant information and sample more contrast-specific information, we propose a new framework to learn the optimal under-sampling pattern for MCMRI. Secondly, a dual-domain model is established to reconstruct the target image in both the image domain and the k-space frequency domain. The model in the image domain introduces a spatial transformation to explicitly model the inconsistent and unaligned structures of MCMRI. The model in the k-space learns prior knowledge from the frequency domain, enabling the model to capture more global information from the input images. Thirdly, we employ the proximal gradient algorithm to optimize the proposed model and then unfold the iterative results into a deep-unfolding network, called MC-DuDoN. We evaluate the proposed MC-DuDoN on MCMRI super-resolution and reconstruction tasks. Experimental results give credence to the superiority of the current model. In particular, since our approach explicitly models the inconsistent structures, it shows robustness on spatially misaligned MCMRI. In the reconstruction task, compared with conventional masks, the learned mask restores more realistic images, even under an ultra-high acceleration ratio ( ×30 ). Code is available at https://github.com/lpcccc-cv/MC-DuDoNet
Beschreibung:Date Revised 02.09.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2024.3445729