Photocatalyst AuNi-MOFs with Different Plasmonic Coverages for Improved Hydrogen Evolution from Water

Plasmonic materials are fundamental photosensitizer materials for photocatalytic reactions. Various structures, including core-shell types, satellite types, and distribution types, have been designed and prepared for the optimization of photocatalytic reactions. However, understanding the profound e...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 40(2024), 35 vom: 03. Sept., Seite 18695-18705
1. Verfasser: Cao, Xu Chuan (VerfasserIn)
Weitere Verfasser: Zhang, Bai Chao, Cui, Jing, Suo, Chao, Duan, Xiao Chuan, Guo, Shao Hui, Zhang, Xian-Ming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Plasmonic materials are fundamental photosensitizer materials for photocatalytic reactions. Various structures, including core-shell types, satellite types, and distribution types, have been designed and prepared for the optimization of photocatalytic reactions. However, understanding the profound enhancement mechanism of various structures is still challenging. Thus, the plasmonic coverage is considered to be an index for analyzing the influence mechanism. Here, AuNi-MOF core-shell flower sphere-like photocatalysts are prepared, and the size of the flower sphere can be precisely regulated by varying the amount of Au. Thus, different plasmonic coverages are realized through the tuning of spheres of different sizes. The high plasmonic coverage of catalysts can enhance visible light absorption, facilitate the generation of photogenerated electron-hole pairs, and shorten the photogenerated carrier transport distance. Moreover, the exponential relationship between the photocatalytic hydrogen production performance and the plasmonic coverage can also be used as a guide for material design. As a result, a photocatalytic hydrogen production rate of 3389 μmol·g-1·h-1 is achieved in the Au@Ni-MOF sample with high plasmonic coverage, which will advance the plasmonic application in photocatalytic reactions
Beschreibung:Date Revised 03.09.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.4c02335