Proximal High-Index Metamaterials based on a Superlattice of Gold Nanohexagons Targeting the Near-Infrared Band

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 41 vom: 07. Okt., Seite e2405650
1. Verfasser: Shin, Dong-In (VerfasserIn)
Weitere Verfasser: Kim, Jeongwon, Im, Seong-Gyun, Kang, Taewoo, Wang, Ke, Lee, Gaehang, Kwon, Seok Joon, Park, Sungho, Yi, Gi-Ra
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Au nanohexagon high refractive index near IR (NIR) percolation plasmonic metamaterials superlattice
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Plasmonic nanoparticles can be assembled into a superlattice, to form optical metamaterials, particularly targeting precise control of optical properties such as refractive index (RI). The superlattices exhibit enhanced near-field, given the sufficiently narrow gap between nanoparticles supporting multiple plasmonic resonance modes only realized in proximal environments. Herein, the planar superlattice of plasmonic Au nanohexagons (AuNHs) with precisely controlled geometries such as size, shape, and edge-gaps is reported. The proximal AuNHs superlattice realized over a large area with selective edge-to-edge assembly exhibited the highest-ever-recorded RI values in the near-infrared (NIR) band, surpassing the upper limit of the RI of the natural intrinsic materials (up to 10.04 at λ = 1.5 µm). The exceptionally enhanced RI is derived from intensified in-plane surface plasmon coupling across the superlattices. Precise control of the edge-gap of neighboring AuNHs systematically tuned the RI as confirmed by numerical analysis based on the plasmonic percolation model. Furthermore, a 1D photonic crystal, composed of alternating layers of AuNHs superlattices and low-index polymers, is constructed to enhance the selectivity of the reflectivity operating in the NIR band. It is expected that the proximal AuNHs superlattices can be used as new optical metamaterials that can be extended to the NIR range
Beschreibung:Date Revised 10.10.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202405650