Medical Image Segmentation Review : The Success of U-Net

Automatic medical image segmentation is a crucial topic in the medical domain and successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the most widespread image segmentation architecture due to its flexibility, optimized modular design, and success in all medical im...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 21. Dez., Seite 10076-10095
1. Verfasser: Azad, Reza (VerfasserIn)
Weitere Verfasser: Aghdam, Ehsan Khodapanah, Rauland, Amelie, Jia, Yiwei, Avval, Atlas Haddadi, Bozorgpour, Afshin, Karimijafarbigloo, Sanaz, Cohen, Joseph Paul, Adeli, Ehsan, Merhof, Dorit
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Review
LEADER 01000caa a22002652 4500
001 NLM376547413
003 DE-627
005 20250104234435.0
007 cr uuu---uuuuu
008 240822s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3435571  |2 doi 
028 5 2 |a pubmed24n1651.xml 
035 |a (DE-627)NLM376547413 
035 |a (NLM)39167505 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Azad, Reza  |e verfasserin  |4 aut 
245 1 0 |a Medical Image Segmentation Review  |b The Success of U-Net 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.11.2024 
500 |a Date Revised 03.01.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Automatic medical image segmentation is a crucial topic in the medical domain and successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the most widespread image segmentation architecture due to its flexibility, optimized modular design, and success in all medical image modalities. Over the years, the U-Net model has received tremendous attention from academic and industrial researchers who have extended it to address the scale and complexity created by medical tasks. These extensions are commonly related to enhancing the U-Net's backbone, bottleneck, or skip connections, or including representation learning, or combining it with a Transformer architecture, or even addressing probabilistic prediction of the segmentation map. Having a compendium of different previously proposed U-Net variants makes it easier for machine learning researchers to identify relevant research questions and understand the challenges of the biological tasks that challenge the model. In this work, we discuss the practical aspects of the U-Net model and organize each variant model into a taxonomy. Moreover, to measure the performance of these strategies in a clinical application, we propose fair evaluations of some unique and famous designs on well-known datasets. Furthermore, we provide a comprehensive implementation library with trained models. In addition, for ease of future studies, we created an online list of U-Net papers with their possible official implementation 
650 4 |a Journal Article 
650 4 |a Review 
700 1 |a Aghdam, Ehsan Khodapanah  |e verfasserin  |4 aut 
700 1 |a Rauland, Amelie  |e verfasserin  |4 aut 
700 1 |a Jia, Yiwei  |e verfasserin  |4 aut 
700 1 |a Avval, Atlas Haddadi  |e verfasserin  |4 aut 
700 1 |a Bozorgpour, Afshin  |e verfasserin  |4 aut 
700 1 |a Karimijafarbigloo, Sanaz  |e verfasserin  |4 aut 
700 1 |a Cohen, Joseph Paul  |e verfasserin  |4 aut 
700 1 |a Adeli, Ehsan  |e verfasserin  |4 aut 
700 1 |a Merhof, Dorit  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 21. Dez., Seite 10076-10095  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:21  |g month:12  |g pages:10076-10095 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3435571  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 21  |c 12  |h 10076-10095