U-Match : Exploring Hierarchy-Aware Local Context for Two-View Correspondence Learning

Rejecting outlier correspondences is one of the critical steps for successful feature-based two-view geometry estimation, and contingent heavily upon local context exploration. Recent advances focus on devising elaborate local context extractors whereas typically adopting explicit neighborhood relat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 01. Dez., Seite 10960-10977
1. Verfasser: Li, Zizhuo (VerfasserIn)
Weitere Verfasser: Zhang, Shihua, Ma, Jiayi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM376547383
003 DE-627
005 20250306133422.0
007 cr uuu---uuuuu
008 240822s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3447048  |2 doi 
028 5 2 |a pubmed25n1254.xml 
035 |a (DE-627)NLM376547383 
035 |a (NLM)39167502 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Zizhuo  |e verfasserin  |4 aut 
245 1 0 |a U-Match  |b Exploring Hierarchy-Aware Local Context for Two-View Correspondence Learning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Rejecting outlier correspondences is one of the critical steps for successful feature-based two-view geometry estimation, and contingent heavily upon local context exploration. Recent advances focus on devising elaborate local context extractors whereas typically adopting explicit neighborhood relationship modeling at a specific scale, which is intrinsically flawed and inflexible, because 1) severe outliers often populated in putative correspondences and 2) the uncertainty in the distribution of inliers and outliers make the network incapable of capturing adequate and reliable local context from such neighborhoods, therefore resulting in the failure of pose estimation. This prospective study proposes a novel network called U-Match that has the flexibility to enable implicit local context awareness at multiple levels, naturally circumventing the aforementioned issues that plague most existing studies. Specifically, to aggregate multi-level local context implicitly, a hierarchy-aware graph representation module is designed to flexibly encode and decode hierarchical features. Moreover, considering that global context always works collaboratively with local context, an orthogonal local-and-global information fusion module is presented to integrate complementary local and global context in a redundancy-free manner, thus yielding compact feature representations to facilitate correspondence learning. Thorough experimentation across relative pose estimation, homography estimation, visual localization, and point cloud registration affirms U-Match's remarkable capabilities 
650 4 |a Journal Article 
700 1 |a Zhang, Shihua  |e verfasserin  |4 aut 
700 1 |a Ma, Jiayi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 01. Dez., Seite 10960-10977  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:01  |g month:12  |g pages:10960-10977 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3447048  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 01  |c 12  |h 10960-10977