CO-Net++ : A Cohesive Network for Multiple Point Cloud Tasks at Once With Two-Stage Feature Rectification

We present CO-Net++, a cohesive framework that optimizes multiple point cloud tasks collectively across heterogeneous dataset domains with a two-stage feature rectification strategy. The core of CO-Net++ lies in optimizing task-shared parameters to capture universal features across various tasks whi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 01. Nov., Seite 10911-10928
1. Verfasser: Xie, Tao (VerfasserIn)
Weitere Verfasser: Dai, Kun, Sun, Qihao, Jiang, Zhiqiang, Cao, Chuqing, Zhao, Lijun, Wang, Ke, Li, Ruifeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM376547367
003 DE-627
005 20241108232410.0
007 cr uuu---uuuuu
008 240822s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3447008  |2 doi 
028 5 2 |a pubmed24n1594.xml 
035 |a (DE-627)NLM376547367 
035 |a (NLM)39167501 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xie, Tao  |e verfasserin  |4 aut 
245 1 0 |a CO-Net++  |b A Cohesive Network for Multiple Point Cloud Tasks at Once With Two-Stage Feature Rectification 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present CO-Net++, a cohesive framework that optimizes multiple point cloud tasks collectively across heterogeneous dataset domains with a two-stage feature rectification strategy. The core of CO-Net++ lies in optimizing task-shared parameters to capture universal features across various tasks while discerning task-specific parameters tailored to encapsulate the unique characteristics of each task. Specifically, CO-Net++ develops a two-stage feature rectification strategy (TFRS) that distinctly separates the optimization processes for task-shared and task-specific parameters. At the first stage, TFRS configures all parameters in backbone as task-shared, which encourages CO-Net++ to thoroughly assimilate universal attributes pertinent to all tasks. In addition, TFRS introduces a sign-based gradient surgery to facilitate the optimization of task-shared parameters, thus alleviating conflicting gradients induced by various dataset domains. In the second stage, TFRS freezes task-shared parameters and flexibly integrates task-specific parameters into the network for encoding specific characteristics of each dataset domain. CO-Net++ prominently mitigates conflicting optimization caused by parameter entanglement, ensuring the sufficient identification of universal and specific features. Extensive experiments reveal that CO-Net++ realizes exceptional performances on both 3D object detection and 3D semantic segmentation tasks. Moreover, CO-Net++ delivers an impressive incremental learning capability and prevents catastrophic amnesia when generalizing to new point cloud tasks 
650 4 |a Journal Article 
700 1 |a Dai, Kun  |e verfasserin  |4 aut 
700 1 |a Sun, Qihao  |e verfasserin  |4 aut 
700 1 |a Jiang, Zhiqiang  |e verfasserin  |4 aut 
700 1 |a Cao, Chuqing  |e verfasserin  |4 aut 
700 1 |a Zhao, Lijun  |e verfasserin  |4 aut 
700 1 |a Wang, Ke  |e verfasserin  |4 aut 
700 1 |a Li, Ruifeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 01. Nov., Seite 10911-10928  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:01  |g month:11  |g pages:10911-10928 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3447008  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 01  |c 11  |h 10911-10928