MSEmbGAN : Multi-Stitch Embroidery Synthesis via Region-Aware Texture Generation

Convolutional neural networks (CNNs) are widely used for embroidery feature synthesis from images. However, they are still unable to predict diverse stitch types, which makes it difficult for the CNNs to effectively extract stitch features. In this paper, we propose a multi-stitch embroidery generat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 21. Aug.
1. Verfasser: Hu, Xinrong (VerfasserIn)
Weitere Verfasser: Yang, Chen, Fang, Fei, Huang, Jin, Li, Ping, Sheng, Bin, Lee, Tong-Yee
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM376547340
003 DE-627
005 20240906233126.0
007 cr uuu---uuuuu
008 240822s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3447351  |2 doi 
028 5 2 |a pubmed24n1525.xml 
035 |a (DE-627)NLM376547340 
035 |a (NLM)39167500 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Xinrong  |e verfasserin  |4 aut 
245 1 0 |a MSEmbGAN  |b Multi-Stitch Embroidery Synthesis via Region-Aware Texture Generation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Convolutional neural networks (CNNs) are widely used for embroidery feature synthesis from images. However, they are still unable to predict diverse stitch types, which makes it difficult for the CNNs to effectively extract stitch features. In this paper, we propose a multi-stitch embroidery generative adversarial network (MSEmbGAN) that uses a region-aware texture generation sub-network to predict diverse embroidery features from images. To the best of our knowledge, our work is the first CNN-based generative adversarial network to succeed in this task. Our region-aware texture generation sub-network detects multiple regions in the input image using a stitchclassifierandgeneratesastitchtextureforeachregionbasedonitsshapefeatures.Wealsoproposeacolorizationnetworkwitha color feature extractor, which helps achieve full image color consistency by requiring the color attributes of the output to closely resemble the input image. Because of the current lack of labeled embroidery image datasets, we provide a new multi-stitch embroidery dataset that is annotated with three single-stitch types and one multi-stitch type. Our dataset, which includes more than 30K high-quality multistitch embroidery images, more than 13K aligned content-embroidered images, and more than 17K unaligned images, is currently the largest embroidery dataset accessible, as far as we know. Quantitative and qualitative experimental results, including a qualitative user study, show that our MSEmbGAN outperforms current state-of-the-artembroiderysynthesisandstyle-transfermethodsonallevaluation indicators. Our demo and dataset sample can be found on the website https://csai.wtu.edu.cn/TVCG01/index.html 
650 4 |a Journal Article 
700 1 |a Yang, Chen  |e verfasserin  |4 aut 
700 1 |a Fang, Fei  |e verfasserin  |4 aut 
700 1 |a Huang, Jin  |e verfasserin  |4 aut 
700 1 |a Li, Ping  |e verfasserin  |4 aut 
700 1 |a Sheng, Bin  |e verfasserin  |4 aut 
700 1 |a Lee, Tong-Yee  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 21. Aug.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:21  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3447351  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 21  |c 08