Intricate Evaporation Dynamics in Different Multidroplet Configurations
We experimentally investigate the evaporation dynamics of an array of sessile droplets arranged in different configurations. Utilizing a customized goniometer, we capture side and top view profiles to monitor the evolution of height, spread, contact angle, and volume of the droplets. Our results rev...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 40(2024), 35 vom: 03. Sept., Seite 18555-18567 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | We experimentally investigate the evaporation dynamics of an array of sessile droplets arranged in different configurations. Utilizing a customized goniometer, we capture side and top view profiles to monitor the evolution of height, spread, contact angle, and volume of the droplets. Our results reveal that the lifetime of a droplet array surpasses that of an isolated droplet, attributed to the shielding effect induced by neighboring droplets, which elevates the local vapor concentration, thereby reducing the evaporation rate. We found that lifetime increases as droplet separation distance decreases at a fixed configuration and substrate temperature. It is observed that the lifetimes increase with the number of droplets. We observe a decrease in lifetimes, following a power law trend, with increasing substrate temperature, with the shielding effect diminishing at higher substrate temperatures due to natural convective effects. We also observe a generalized behavior for the centrally placed droplet across various separation distances and substrate temperatures. This arises from different droplet configurations and substrate temperatures, which modify the local vapor concentration around the droplets without significantly impacting the contact line dynamics. Additionally, the experimental results are compared with a diffusion-based theoretical model that incorporates the evaporative cooling effect to predict the lifetime of the central droplet within the array. We observe that the theoretical model satisfactorily predicts the lifetime of the droplet at room temperature. However, for high-temperature cases, the model slightly overpredicts the evaporative lifetimes |
---|---|
Beschreibung: | Date Revised 03.09.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.4c01929 |