|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM376463546 |
003 |
DE-627 |
005 |
20241108232405.0 |
007 |
cr uuu---uuuuu |
008 |
240820s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2024.3445666
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1594.xml
|
035 |
|
|
|a (DE-627)NLM376463546
|
035 |
|
|
|a (NLM)39159040
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Guanpu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Approaching the Global Nash Equilibrium of Non-Convex Multi-Player Games
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 08.11.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Many machine learning problems can be formulated as non-convex multi-player games. Due to non-convexity, it is challenging to obtain the existence condition of the global Nash equilibrium (NE) and design theoretically guaranteed algorithms. This paper studies a class of non-convex multi-player games, where players' payoff functions consist of canonical functions and quadratic operators. We leverage conjugate properties to transform the complementary problem into a variational inequality (VI) problem using a continuous pseudo-gradient mapping. We prove the existence condition of the global NE as the solution to the VI problem satisfies a duality relation. We then design an ordinary differential equation to approach the global NE with an exponential convergence rate. For practical implementation, we derive a discretized algorithm and apply it to two scenarios: multi-player games with generalized monotonicity and multi-player potential games. In the two settings, step sizes are required to be O(1/k) and O(1/√k) to yield the convergence rates of O(1/ k) and O(1/√k), respectively. Extensive experiments on robust neural network training and sensor network localization validate our theory. Our code is available at https://github.com/GuanpuChen/Global-NE
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Xu, Gehui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Fengxiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hong, Yiguang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rutkowski, Leszek
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tao, Dacheng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 46(2024), 12 vom: 15. Nov., Seite 10797-10813
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:46
|g year:2024
|g number:12
|g day:15
|g month:11
|g pages:10797-10813
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2024.3445666
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 46
|j 2024
|e 12
|b 15
|c 11
|h 10797-10813
|