Approaching the Global Nash Equilibrium of Non-Convex Multi-Player Games

Many machine learning problems can be formulated as non-convex multi-player games. Due to non-convexity, it is challenging to obtain the existence condition of the global Nash equilibrium (NE) and design theoretically guaranteed algorithms. This paper studies a class of non-convex multi-player games...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 15. Nov., Seite 10797-10813
1. Verfasser: Chen, Guanpu (VerfasserIn)
Weitere Verfasser: Xu, Gehui, He, Fengxiang, Hong, Yiguang, Rutkowski, Leszek, Tao, Dacheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM376463546
003 DE-627
005 20241108232405.0
007 cr uuu---uuuuu
008 240820s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3445666  |2 doi 
028 5 2 |a pubmed24n1594.xml 
035 |a (DE-627)NLM376463546 
035 |a (NLM)39159040 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Guanpu  |e verfasserin  |4 aut 
245 1 0 |a Approaching the Global Nash Equilibrium of Non-Convex Multi-Player Games 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Many machine learning problems can be formulated as non-convex multi-player games. Due to non-convexity, it is challenging to obtain the existence condition of the global Nash equilibrium (NE) and design theoretically guaranteed algorithms. This paper studies a class of non-convex multi-player games, where players' payoff functions consist of canonical functions and quadratic operators. We leverage conjugate properties to transform the complementary problem into a variational inequality (VI) problem using a continuous pseudo-gradient mapping. We prove the existence condition of the global NE as the solution to the VI problem satisfies a duality relation. We then design an ordinary differential equation to approach the global NE with an exponential convergence rate. For practical implementation, we derive a discretized algorithm and apply it to two scenarios: multi-player games with generalized monotonicity and multi-player potential games. In the two settings, step sizes are required to be O(1/k) and O(1/√k) to yield the convergence rates of O(1/ k) and O(1/√k), respectively. Extensive experiments on robust neural network training and sensor network localization validate our theory. Our code is available at https://github.com/GuanpuChen/Global-NE 
650 4 |a Journal Article 
700 1 |a Xu, Gehui  |e verfasserin  |4 aut 
700 1 |a He, Fengxiang  |e verfasserin  |4 aut 
700 1 |a Hong, Yiguang  |e verfasserin  |4 aut 
700 1 |a Rutkowski, Leszek  |e verfasserin  |4 aut 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 15. Nov., Seite 10797-10813  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:15  |g month:11  |g pages:10797-10813 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3445666  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 15  |c 11  |h 10797-10813