Deep Cross-View Reconstruction GAN Based on Correlated Subspace for Multi-View Transformation

In scenarios where identifying face information in the visible spectrum (VIS) is challenging due to poor lighting conditions, the use of near-infrared (NIR) and thermal (TH) cameras can provide viable alternatives. However, the unique data distribution of images captured by these cameras compared to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 16., Seite 4614-4626
1. Verfasser: Mi, Jian-Xun (VerfasserIn)
Weitere Verfasser: He, Junchang, Li, Weisheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM376463449
003 DE-627
005 20240826232733.0
007 cr uuu---uuuuu
008 240820s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3442610  |2 doi 
028 5 2 |a pubmed24n1513.xml 
035 |a (DE-627)NLM376463449 
035 |a (NLM)39159025 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mi, Jian-Xun  |e verfasserin  |4 aut 
245 1 0 |a Deep Cross-View Reconstruction GAN Based on Correlated Subspace for Multi-View Transformation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In scenarios where identifying face information in the visible spectrum (VIS) is challenging due to poor lighting conditions, the use of near-infrared (NIR) and thermal (TH) cameras can provide viable alternatives. However, the unique data distribution of images captured by these cameras compared to VIS images presents challenges in matching face identities. To address these challenges, we propose a novel image transformation framework. The framework includes feature extraction from the input image, followed by a transformation network that generates target domain images with perceptual fidelity. Additionally, a reconstruction network preserves original information by reconstructing the original domain image from the extracted features. By considering the correlation between features from both domains, our framework utilizes paired data obtained from the same individual. We apply this framework to two well-established image-to-image transformation models, pix2pix and CycleGAN, known as CRC-pix2pix and CRC-CycleGAN respectively. The versatility of our approach allows extension to other models based on pix2pix or CycleGAN architectures. Our models generate high-quality images while preserving the identity information of the original face. Performance evaluation on TFW and BUAA NIR-VIS datasets demonstrates the superiority of our models in terms of generated image face matching and evaluation metrics such as SSIM, MSE, PSNR, and LPIPS. Moreover, we introduce the CQUPT-VIS-TH dataset, which enriches the paired dataset with thermal-visual face data capturing various angles and expressions 
650 4 |a Journal Article 
700 1 |a He, Junchang  |e verfasserin  |4 aut 
700 1 |a Li, Weisheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 16., Seite 4614-4626  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:16  |g pages:4614-4626 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3442610  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 16  |h 4614-4626