The spike-and-slab lasso and scalable algorithm to accommodate multinomial outcomes in variable selection problems

© 2023 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 51(2024), 11 vom: 18., Seite 2039-2061
1. Verfasser: Leach, Justin M (VerfasserIn)
Weitere Verfasser: Yi, Nengjun, Aban, Inmaculada, The Alzheimer's Disease Neuroimaging Initiative
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Bayesian variable selection elastic net generalized linear models multinomial outcomes spike-and-slab
LEADER 01000caa a22002652 4500
001 NLM376445874
003 DE-627
005 20240923235247.0
007 cr uuu---uuuuu
008 240819s2024 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2023.2258301  |2 doi 
028 5 2 |a pubmed24n1545.xml 
035 |a (DE-627)NLM376445874 
035 |a (NLM)39157266 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Leach, Justin M  |e verfasserin  |4 aut 
245 1 4 |a The spike-and-slab lasso and scalable algorithm to accommodate multinomial outcomes in variable selection problems 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.09.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a Spike-and-slab prior distributions are used to impose variable selection in Bayesian regression-style problems with many possible predictors. These priors are a mixture of two zero-centered distributions with differing variances, resulting in different shrinkage levels on parameter estimates based on whether they are relevant to the outcome. The spike-and-slab lasso assigns mixtures of double exponential distributions as priors for the parameters. This framework was initially developed for linear models, later developed for generalized linear models, and shown to perform well in scenarios requiring sparse solutions. Standard formulations of generalized linear models cannot immediately accommodate categorical outcomes with > 2 categories, i.e. multinomial outcomes, and require modifications to model specification and parameter estimation. Such modifications are relatively straightforward in a Classical setting but require additional theoretical and computational considerations in Bayesian settings, which can depend on the choice of prior distributions for the parameters of interest. While previous developments of the spike-and-slab lasso focused on continuous, count, and/or binary outcomes, we generalize the spike-and-slab lasso to accommodate multinomial outcomes, developing both the theoretical basis for the model and an expectation-maximization algorithm to fit the model. To our knowledge, this is the first generalization of the spike-and-slab lasso to allow for multinomial outcomes 
650 4 |a Journal Article 
650 4 |a Bayesian variable selection 
650 4 |a elastic net 
650 4 |a generalized linear models 
650 4 |a multinomial outcomes 
650 4 |a spike-and-slab 
700 1 |a Yi, Nengjun  |e verfasserin  |4 aut 
700 1 |a Aban, Inmaculada  |e verfasserin  |4 aut 
700 1 |a The Alzheimer's Disease Neuroimaging Initiative  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 51(2024), 11 vom: 18., Seite 2039-2061  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:51  |g year:2024  |g number:11  |g day:18  |g pages:2039-2061 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2023.2258301  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2024  |e 11  |b 18  |h 2039-2061