Hydrogen Diffusion in Hybrid Perovskites from Exchange NMR

© 2024 The Authors. Published by American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 36(2024), 15 vom: 13. Aug., Seite 7525-7532
1. Verfasser: Hope, Michael A (VerfasserIn)
Weitere Verfasser: Mishra, Aditya, Emsley, Lyndon
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:© 2024 The Authors. Published by American Chemical Society.
Ion migration is an important phenomenon affecting the performance of hybrid perovskite solar cells. It is particularly challenging, however, to disentangle the contribution of H+ diffusion from that of other ions, and the atomic-scale mechanism remains unclear. Here, we use 2H exchange NMR to prove that 2H+ ions exchange between MA+ cations on the time scale of seconds for both MAPbI3 and FA0.7MA0.3PbI3 perovskites. We do this by exploiting 15N-enriched MA+ to label the cations by their 15N spin state. The exchange rates and activation energy are then calculated by performing experiments as functions of mixing time and temperature. By comparing the measured exchange rates to previously measured bulk H+ diffusivities, we demonstrate that, after dissociating, H+ ions travel through the lattice before associating to another cation rather than hopping between adjacent cations
Beschreibung:Date Revised 20.08.2024
published: Electronic-eCollection
Citation Status PubMed-not-MEDLINE
ISSN:0897-4756
DOI:10.1021/acs.chemmater.4c01498