|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM376407034 |
003 |
DE-627 |
005 |
20240914232737.0 |
007 |
cr uuu---uuuuu |
008 |
240818s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1016/j.plaphy.2024.109046
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1533.xml
|
035 |
|
|
|a (DE-627)NLM376407034
|
035 |
|
|
|a (NLM)39153391
|
035 |
|
|
|a (PII)S0981-9428(24)00714-9
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kumar, Rohit
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Abscisic acid
|b An emerging player in plant-virus interactions
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 14.09.2024
|
500 |
|
|
|a Date Revised 14.09.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright © 2024 Elsevier Masson SAS. All rights reserved.
|
520 |
|
|
|a In the evolutionary arm race between plants and viral pathogens, the plant hormone abscisic acid (ABA) has surfaced as a crucial player. This review accumulates substantial evidence that portrays ABA as a crucial regulatory hub, coordinating the complex network of plant antiviral immunity. It is capable of synchronizing resistance pathways, yet it can also be exploited as a susceptibility factor by viral effectors. ABA fortifies multi-layered defenses on one hand, by activating RNA silencing mechanisms that precisely degrade viral genomes, strengthening plasmodesmal gateways with callose barriers, and priming the transcriptional programs of resistance genes. On the other hand, ABA can augment susceptibility by counteracting other defense hormones, dampening oxidative bursts, and inhibiting antiviral defence proteins. Interestingly, a variety of viruses have independently evolved strategies to manipulate ABA signalling pathways. This fascinating paradigm of hormonal conflicts unveils ABA as an important regulatory handle that determines infection trajectories. Future studies should carefully explore the multifaceted impacts of ABA modulation on plant immunity and susceptibility to diverse pathogens before considering practical applications in viral resistance strategies
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a Abscisic acid
|
650 |
|
4 |
|a Hormones
|
650 |
|
4 |
|a Resistance
|
650 |
|
4 |
|a Signalling
|
650 |
|
4 |
|a Susceptibility
|
650 |
|
4 |
|a Virus
|
650 |
|
7 |
|a Abscisic Acid
|2 NLM
|
650 |
|
7 |
|a 72S9A8J5GW
|2 NLM
|
650 |
|
7 |
|a Plant Growth Regulators
|2 NLM
|
700 |
1 |
|
|a Dasgupta, Indranil
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Plant physiology and biochemistry : PPB
|d 1991
|g 215(2024) vom: 17. Sept., Seite 109046
|w (DE-627)NLM098178261
|x 1873-2690
|7 nnns
|
773 |
1 |
8 |
|g volume:215
|g year:2024
|g day:17
|g month:09
|g pages:109046
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1016/j.plaphy.2024.109046
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 215
|j 2024
|b 17
|c 09
|h 109046
|