Strategically Modulating Proton Activity and Electric Double Layer Adsorption for Innovative All-Vanadium Aqueous Mn2+/Proton Hybrid Batteries

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 41 vom: 02. Okt., Seite e2407233
1. Verfasser: Li, Ming (VerfasserIn)
Weitere Verfasser: Li, Cong, Zuo, Chunli, Hu, Jisong, Li, Chen, Luo, Wen, Luo, Sha, Duan, An, Wang, Junjun, Wang, Xuanpeng, Sun, Wei, Mai, Liqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Mn‐ion batteries electric double layer structure long cycle life proton activity vanadium dissolution
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Aqueous Mn-ion batteries (MIBs) exhibit a promising development potential due to their cost-effectiveness, high safety, and potential for high energy density. However, the development of MIBs is hindered by the lack of electrode materials capable of storing Mn2+ ions due to acidic manganese salt electrolytes and large ion radius. Herein, the tunnel-type structure of monoclinic VO2 nanorods to effectively store Mn2+ ions via a reversible (de)insertion chemistry for the first time is reported. Utilizing exhaustive in situ/ex situ multi-scale characterization techniques and theoretical calculations, the co-insertion process of Mn2+/proton is revealed, elucidating the capacity decay mechanism wherein high proton activity leads to irreversible dissolution loss of vanadium species. Further, the Grotthuss transfer mechanism of protons is broken via a hydrogen bond reconstruction strategy while achieving the modulation of the electric double-layer structure, which effectively suppresses the electrode interface proton activity. Consequently, the VO2 demonstrates excellent electrochemical performance at both ambient temperatures and -20 °C, especially maintaining a high capacity of 162 mAh g-1 at 5 A g-1 after a record-breaking 20 000 cycles. Notably, the all-vanadium symmetric pouch cells are successfully assembled for the first time based on the "rocking-chair" Mn2+/proton hybrid mechanism, demonstrating the practical application potential
Beschreibung:Date Revised 10.10.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202407233