Quality Improvement Synthetic Aperture Radar (SAR) Images Using Compressive Sensing (CS) With Moore-Penrose Inverse (MPI) and Prior From Spatial Variant Apodization (SVA)

When the locations of non-zero samples are known, the Moore-Penrose inverse (MPI) can be used for the data recovery of compressive sensing (CS). First, the prior from the locations is used to shrink the measurement matrix in CS. Then the data can be recovered by using MPI with such shrinking matrix....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 16. Dez., Seite 10349-10361
1. Verfasser: Xiong, Tao (VerfasserIn)
Weitere Verfasser: Li, Yachao, Xing, Mengdao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM376381221
003 DE-627
005 20250306131211.0
007 cr uuu---uuuuu
008 240817s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3444910  |2 doi 
028 5 2 |a pubmed25n1253.xml 
035 |a (DE-627)NLM376381221 
035 |a (NLM)39150799 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiong, Tao  |e verfasserin  |4 aut 
245 1 0 |a Quality Improvement Synthetic Aperture Radar (SAR) Images Using Compressive Sensing (CS) With Moore-Penrose Inverse (MPI) and Prior From Spatial Variant Apodization (SVA) 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a When the locations of non-zero samples are known, the Moore-Penrose inverse (MPI) can be used for the data recovery of compressive sensing (CS). First, the prior from the locations is used to shrink the measurement matrix in CS. Then the data can be recovered by using MPI with such shrinking matrix. We can also prove that the results of data recovery from the original CS and our MPI-based method are the same mathematically. Based on such finding, a novel sidelobe-reduction method for synthetic aperture radar (SAR) and Polarimetric SAR (POLSAR) images is studied. The aim of sidelobe reduction is to recover the samples within the mainlobes and suppress the ones within the sidelobes. In our study, prior from spatial variant apodization (SVA) is used to determine the locations of the mainlobes and the sidelobes, respectively. With CS, the mainlobe area can be well recovered. Samples within the sidelobe areas are also recovered using background fusion. Our method is suitable for acquired data with large sizes. The performance of the proposed algorithm is evaluated with acquired space-borne SAR and air-borne POLSAR data. In our experiments, we use the [Formula: see text] space-borne SAR data with the size of 10000 (samples) × 10000 (samples) and [Formula: see text] POLSAR data with the size of 10000 (samples) × 26000 (samples) for sidelobe suppression. Furthermore, We also verified that, our method does not affect the polarization signatures. The effectiveness for the sidelobe suppression is qualitatively examined, and results were satisfactory 
650 4 |a Journal Article 
700 1 |a Li, Yachao  |e verfasserin  |4 aut 
700 1 |a Xing, Mengdao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 16. Dez., Seite 10349-10361  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:16  |g month:12  |g pages:10349-10361 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3444910  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 16  |c 12  |h 10349-10361