A Survey on Graph Neural Networks for Time Series : Forecasting, Classification, Imputation, and Anomaly Detection

Time series are the primary data type used to record dynamic system measurements and generated in great volume by both physical sensors and online processes (virtual sensors). Time series analytics is therefore crucial to unlocking the wealth of information implicit in available data. With the recen...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 14. Aug.
1. Verfasser: Jin, Ming (VerfasserIn)
Weitere Verfasser: Koh, Huan Yee, Wen, Qingsong, Zambon, Daniele, Alippi, Cesare, Webb, Geoffrey I, King, Irwin, Pan, Shirui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM376288108
003 DE-627
005 20240815232910.0
007 cr uuu---uuuuu
008 240815s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3443141  |2 doi 
028 5 2 |a pubmed24n1502.xml 
035 |a (DE-627)NLM376288108 
035 |a (NLM)39141471 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jin, Ming  |e verfasserin  |4 aut 
245 1 2 |a A Survey on Graph Neural Networks for Time Series  |b Forecasting, Classification, Imputation, and Anomaly Detection 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 15.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Time series are the primary data type used to record dynamic system measurements and generated in great volume by both physical sensors and online processes (virtual sensors). Time series analytics is therefore crucial to unlocking the wealth of information implicit in available data. With the recent advancements in graph neural networks (GNNs), there has been a surge in GNN-based approaches for time series analysis. These approaches can explicitly model inter-temporal and inter-variable relationships, which traditional and other deep neural network-based methods struggle to do. In this survey, we provide a comprehensive review of graph neural networks for time series analysis (GNN4TS), encompassing four fundamental dimensions: forecasting, classification, anomaly detection, and imputation. Our aim is to guide designers and practitioners to understand, build applications, and advance research of GNN4TS. At first, we provide a comprehensive task-oriented taxonomy of GNN4TS. Then, we present and discuss representative research works and introduce mainstream applications of GNN4TS. A comprehensive discussion of potential future research directions completes the survey. This survey, for the first time, brings together a vast array of knowledge on GNN-based time series research, highlighting foundations, practical applications, and opportunities of graph neural networks for time series analysis 
650 4 |a Journal Article 
700 1 |a Koh, Huan Yee  |e verfasserin  |4 aut 
700 1 |a Wen, Qingsong  |e verfasserin  |4 aut 
700 1 |a Zambon, Daniele  |e verfasserin  |4 aut 
700 1 |a Alippi, Cesare  |e verfasserin  |4 aut 
700 1 |a Webb, Geoffrey I  |e verfasserin  |4 aut 
700 1 |a King, Irwin  |e verfasserin  |4 aut 
700 1 |a Pan, Shirui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 14. Aug.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:14  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3443141  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 14  |c 08