Identification of illicit discharges in sewer networks by an SWMM-Bayesian coupled approach

© 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (http://creativecommons....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 90(2024), 3 vom: 14. Aug., Seite 951-967
1. Verfasser: Yang, Liyuan (VerfasserIn)
Weitere Verfasser: Huang, Biao, Liu, Jiachun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Bayesian-MCMC SWMM-Bayesian illicit discharge sewer network source identification Sewage Water Pollutants, Chemical
LEADER 01000naa a22002652 4500
001 NLM376283866
003 DE-627
005 20240814233339.0
007 cr uuu---uuuuu
008 240814s2024 xx |||||o 00| ||eng c
024 7 |a 10.2166/wst.2024.233  |2 doi 
028 5 2 |a pubmed24n1501.xml 
035 |a (DE-627)NLM376283866 
035 |a (NLM)39141044 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Liyuan  |e verfasserin  |4 aut 
245 1 0 |a Identification of illicit discharges in sewer networks by an SWMM-Bayesian coupled approach 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.08.2024 
500 |a Date Revised 14.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (http://creativecommons.org/licenses/by-nc-nd/4.0/). 
520 |a Illicit discharges into sewer systems are a widespread concern within China's urban drainage management. They can result in unforeseen environmental contamination and deterioration in the performance of wastewater treatment plants. Consequently, pinpointing the origin of unauthorized discharges in the sewer network is crucial. This study aims to evaluate an integrative method that employs numerical modeling and statistical analysis to determine the locations and characteristics of illicit discharges. The Storm Water Management Model (SWMM) was employed to track water quality variations within the sewer network and examine the concentration profiles of exogenous pollutants under a range of scenarios. The identification technique employed Bayesian inference fused with the Markov chain Monte Carlo sampling method, enabling the estimation of probability distributions for the position of the suspected source, the discharge magnitude, and the commencement of the event. Specifically, the cases involving continuous release and multiple sources were examined. For single-point source identification, where all three parameters are unknown, concentration profiles from two monitoring sites in the path of pollutant transport and dispersion are necessary and sufficient to characterize the pollution source. For the identification of multiple sources, the proposed SWMM-Bayesian strategy with improved sampling is applied, which significantly improves the accuracy 
650 4 |a Journal Article 
650 4 |a Bayesian-MCMC 
650 4 |a SWMM-Bayesian 
650 4 |a illicit discharge 
650 4 |a sewer network 
650 4 |a source identification 
650 7 |a Sewage  |2 NLM 
650 7 |a Water Pollutants, Chemical  |2 NLM 
700 1 |a Huang, Biao  |e verfasserin  |4 aut 
700 1 |a Liu, Jiachun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 90(2024), 3 vom: 14. Aug., Seite 951-967  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnns 
773 1 8 |g volume:90  |g year:2024  |g number:3  |g day:14  |g month:08  |g pages:951-967 
856 4 0 |u http://dx.doi.org/10.2166/wst.2024.233  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 90  |j 2024  |e 3  |b 14  |c 08  |h 951-967