|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM376283696 |
003 |
DE-627 |
005 |
20240814233338.0 |
007 |
cr uuu---uuuuu |
008 |
240814s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.2166/wst.2024.239
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1501.xml
|
035 |
|
|
|a (DE-627)NLM376283696
|
035 |
|
|
|a (NLM)39141031
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zorrilla, Fernando
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Soft sensor for substrate characterization through the reverse application of the ADM1 model for anaerobic digestion plant operations
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 14.08.2024
|
500 |
|
|
|a Date Revised 14.08.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (http://creativecommons.org/licenses/by-nc-nd/4.0/).
|
520 |
|
|
|a Accurately characterizing the substrate used in anaerobic digestion is crucial for predicting the biogas plant's performance. This issue makes particularly challenging the application of modeling in codigestion plants. In this work, a novel methodology called substrate prediction module (SPM) has been developed and tested, using virtual codigestion data. The SPM aims to estimate the inlet properties of the substrate based on the reverse application of the anaerobic digestion model n1 (ADM1). The results show that, while the SPM can estimate some properties of the substrate based on certain output parameters, there are limitations in accurately determining all required variables
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a ADM1
|
650 |
|
4 |
|a biogas plants
|
650 |
|
4 |
|a modeling and simulation
|
650 |
|
4 |
|a subrogated model
|
650 |
|
4 |
|a substrate prediction module
|
650 |
|
4 |
|a virtual digester
|
650 |
|
7 |
|a Biofuels
|2 NLM
|
700 |
1 |
|
|a Sadino-Riquelme, Ma Constanza
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hansen, Felipe
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Donoso-Bravo, Andrés
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water science and technology : a journal of the International Association on Water Pollution Research
|d 1986
|g 90(2024), 3 vom: 14. Aug., Seite 721-730
|w (DE-627)NLM098149431
|x 0273-1223
|7 nnns
|
773 |
1 |
8 |
|g volume:90
|g year:2024
|g number:3
|g day:14
|g month:08
|g pages:721-730
|
856 |
4 |
0 |
|u http://dx.doi.org/10.2166/wst.2024.239
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 90
|j 2024
|e 3
|b 14
|c 08
|h 721-730
|