Towards Context-Aware Emotion Recognition Debiasing From a Causal Demystification Perspective via De-Confounded Training

Understanding emotions from diverse contexts has received widespread attention in computer vision communities. The core philosophy of Context-Aware Emotion Recognition (CAER) is to provide valuable semantic cues for recognizing the emotions of target persons by leveraging rich contextual information...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 13. Dez., Seite 10663-10680
1. Verfasser: Yang, Dingkang (VerfasserIn)
Weitere Verfasser: Yang, Kun, Kuang, Haopeng, Chen, Zhaoyu, Wang, Yuzheng, Zhang, Lihua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM376244240
003 DE-627
005 20250306125358.0
007 cr uuu---uuuuu
008 240814s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3443129  |2 doi 
028 5 2 |a pubmed25n1253.xml 
035 |a (DE-627)NLM376244240 
035 |a (NLM)39137073 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Dingkang  |e verfasserin  |4 aut 
245 1 0 |a Towards Context-Aware Emotion Recognition Debiasing From a Causal Demystification Perspective via De-Confounded Training 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.11.2024 
500 |a Date Revised 03.01.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Understanding emotions from diverse contexts has received widespread attention in computer vision communities. The core philosophy of Context-Aware Emotion Recognition (CAER) is to provide valuable semantic cues for recognizing the emotions of target persons by leveraging rich contextual information. Current approaches invariably focus on designing sophisticated structures to extract perceptually critical representations from contexts. Nevertheless, a long-neglected dilemma is that a severe context bias in existing datasets results in an unbalanced distribution of emotional states among different contexts, causing biased visual representation learning. From a causal demystification perspective, the harmful bias is identified as a confounder that misleads existing models to learn spurious correlations based on likelihood estimation, limiting the models' performance. To address the issue, we embrace causal inference to disentangle the models from the impact of such bias, and formulate the causalities among variables in the CAER task via a customized causal graph. Subsequently, we present a Contextual Causal Intervention Module (CCIM) to de-confound the confounder, which is built upon backdoor adjustment theory to facilitate seeking approximate causal effects during model training. As a plug-and-play component, CCIM can easily integrate with existing approaches and bring significant improvements. Systematic experiments on three datasets demonstrate the effectiveness of our CCIM 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Yang, Kun  |e verfasserin  |4 aut 
700 1 |a Kuang, Haopeng  |e verfasserin  |4 aut 
700 1 |a Chen, Zhaoyu  |e verfasserin  |4 aut 
700 1 |a Wang, Yuzheng  |e verfasserin  |4 aut 
700 1 |a Zhang, Lihua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 13. Dez., Seite 10663-10680  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:13  |g month:12  |g pages:10663-10680 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3443129  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 13  |c 12  |h 10663-10680