Knowledge-graph-based explainable AI : A systematic review

© The Author(s) 2022.

Bibliographische Detailangaben
Veröffentlicht in:Journal of information science. - 1998. - 50(2024), 4 vom: 13. Aug., Seite 1019-1029
1. Verfasser: Rajabi, Enayat (VerfasserIn)
Weitere Verfasser: Etminani, Kobra
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of information science
Schlagworte:Journal Article Knowledge graph artificial intelligence explainable AI systematic review
LEADER 01000caa a22002652 4500
001 NLM376232579
003 DE-627
005 20240814232910.0
007 cr uuu---uuuuu
008 240813s2024 xx |||||o 00| ||eng c
024 7 |a 10.1177/01655515221112844  |2 doi 
028 5 2 |a pubmed24n1501.xml 
035 |a (DE-627)NLM376232579 
035 |a (NLM)39135903 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rajabi, Enayat  |e verfasserin  |4 aut 
245 1 0 |a Knowledge-graph-based explainable AI  |b A systematic review 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © The Author(s) 2022. 
520 |a In recent years, knowledge graphs (KGs) have been widely applied in various domains for different purposes. The semantic model of KGs can represent knowledge through a hierarchical structure based on classes of entities, their properties, and their relationships. The construction of large KGs can enable the integration of heterogeneous information sources and help Artificial Intelligence (AI) systems be more explainable and interpretable. This systematic review examines a selection of recent publications to understand how KGs are currently being used in eXplainable AI systems. To achieve this goal, we design a framework and divide the use of KGs into four categories: extracting features, extracting relationships, constructing KGs, and KG reasoning. We also identify where KGs are mostly used in eXplainable AI systems (pre-model, in-model, and post-model) according to the aforementioned categories. Based on our analysis, KGs have been mainly used in pre-model XAI for feature and relation extraction. They were also utilised for inference and reasoning in post-model XAI. We found several studies that leveraged KGs to explain the XAI models in the healthcare domain 
650 4 |a Journal Article 
650 4 |a Knowledge graph 
650 4 |a artificial intelligence 
650 4 |a explainable AI 
650 4 |a systematic review 
700 1 |a Etminani, Kobra  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of information science  |d 1998  |g 50(2024), 4 vom: 13. Aug., Seite 1019-1029  |w (DE-627)NLM098139452  |x 0165-5515  |7 nnns 
773 1 8 |g volume:50  |g year:2024  |g number:4  |g day:13  |g month:08  |g pages:1019-1029 
856 4 0 |u http://dx.doi.org/10.1177/01655515221112844  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 50  |j 2024  |e 4  |b 13  |c 08  |h 1019-1029