Graphene Incorporated Sugar Derived Carbon Aerogel for Pyridine Adsorption and Oil-Water Separation
Herein, we have synthesized a three-dimensional and hydrophobic graphene incorporated carbon aerogel (G-SCA) derived from sugar. G-SCA is being used as a multifunctional sorbent material for removing various advanced water-soluble and insoluble pollutants. Initially, G-SCA is being explored for the...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - (2024) vom: 12. Aug. |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Herein, we have synthesized a three-dimensional and hydrophobic graphene incorporated carbon aerogel (G-SCA) derived from sugar. G-SCA is being used as a multifunctional sorbent material for removing various advanced water-soluble and insoluble pollutants. Initially, G-SCA is being explored for the adsorption of nitroarenes (nitrophenols, 3-nitroaniline), an insecticide (Phoskill), an antibiotic (ciprofloxacin), and a pharmaceutical drug precursor (pyridine). Later, the same G-SCA is also explored in the absorption of various protic and aprotic organic solvents, and oils (including crude oil, waste cooking oil, and waste engine oil), with excellent recyclability checked up to 10 cycles. Moreover, oil-water separation experiments are also being done in various industrial wastewater and seawater samples to support the real-life accessibility of the present approach. Large-scale applicability of G-SCA is also checked by performing crude oil-seawater separation experiments using a laboratory-scale prototype demonstrating the successful continuous recovery of crude oil |
---|---|
Beschreibung: | Date Revised 12.08.2024 published: Print-Electronic Citation Status Publisher |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.4c01591 |