Co-assembly-Directed Enhancement of the Thermochromic Reversibility and Solvatochromic Selectivity of Supramolecular Polydiacetylene
The construction of functional materials via the co-assembly of multimolecular systems has recently emerged as a fascinating topic. The co-assembled multicomponent could promote the evolution of supramolecular assemblies into a high-order nanoarchitecture with improved functional properties. We repo...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - (2024) vom: 12. Aug. |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | The construction of functional materials via the co-assembly of multimolecular systems has recently emerged as a fascinating topic. The co-assembled multicomponent could promote the evolution of supramolecular assemblies into a high-order nanoarchitecture with improved functional properties. We report the successful preparation of a dual-functional polydiacetylene (MCPDA-Tz-CA) having thermochromic and solvatochromic properties via facile co-assembly of MCDA-Tz and cyanuric acid (MCDA-Tz-CA) followed by ultraviolet-induced polymerization. Molecular packing patterns from powder X-ray diffraction and density functional theory calculations of molecular self-assembly processes confirm highly ordered co-assembled lamellar structures. MCPDA-Tz-CA showed excellent reversible thermochromism properties when the temperature was increased from 30 to 150 °C with a reversible blue-to-red color transition that could be detected by the naked eye. Also, MCPDA-Tz-CA displayed selective blue-to-red solvatochromism against dimethylformamide and dimethyl sulfoxide. Detailed investigations revealed that the enhanced thermochromic reversibility and solvatochromic selectivity could be attributed to the hydrogen-bonding interactions and the formation of a network structure in the MCDA-Tz/cyanuric acid co-assembly. Our research opens a promising route for improving the performance of functional materials via noncovalent multicomponent arrangements at the molecular level |
---|---|
Beschreibung: | Date Revised 12.08.2024 published: Print-Electronic Citation Status Publisher |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.4c02167 |