A review of evaluation approaches for explainable AI with applications in cardiology

© The Author(s) 2024.

Détails bibliographiques
Publié dans:Artificial intelligence review. - 1998. - 57(2024), 9 vom: 07., Seite 240
Auteur principal: Salih, Ahmed M (Auteur)
Autres auteurs: Galazzo, Ilaria Boscolo, Gkontra, Polyxeni, Rauseo, Elisa, Lee, Aaron Mark, Lekadir, Karim, Radeva, Petia, Petersen, Steffen E, Menegaz, Gloria
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Artificial intelligence review
Sujets:Journal Article AI Cardiac Evaluation XAI
Description
Résumé:© The Author(s) 2024.
Explainable artificial intelligence (XAI) elucidates the decision-making process of complex AI models and is important in building trust in model predictions. XAI explanations themselves require evaluation as to accuracy and reasonableness and in the context of use of the underlying AI model. This review details the evaluation of XAI in cardiac AI applications and has found that, of the studies examined, 37% evaluated XAI quality using literature results, 11% used clinicians as domain-experts, 11% used proxies or statistical analysis, with the remaining 43% not assessing the XAI used at all. We aim to inspire additional studies within healthcare, urging researchers not only to apply XAI methods but to systematically assess the resulting explanations, as a step towards developing trustworthy and safe models
Supplementary Information: The online version contains supplementary material available at 10.1007/s10462-024-10852-w
Description:Date Revised 07.09.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:0269-2821
DOI:10.1007/s10462-024-10852-w