Integrating vision-based AI and large language models for real-time water pollution surveillance

© 2024 Water Environment Federation.

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 96(2024), 8 vom: 11. Aug., Seite e11092
1. Verfasser: Samuel, Dinesh Jackson (VerfasserIn)
Weitere Verfasser: Sermet, Yusuf, Cwiertny, David, Demir, Ibrahim
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article YOLOv5 object detection environmental monitoring technology large language models real‐time contextual information vision‐based surveillance system water pollution monitoring
LEADER 01000caa a22002652 4500
001 NLM376166304
003 DE-627
005 20241016232316.0
007 cr uuu---uuuuu
008 240812s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/wer.11092  |2 doi 
028 5 2 |a pubmed24n1569.xml 
035 |a (DE-627)NLM376166304 
035 |a (NLM)39129273 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Samuel, Dinesh Jackson  |e verfasserin  |4 aut 
245 1 0 |a Integrating vision-based AI and large language models for real-time water pollution surveillance 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.08.2024 
500 |a Date Revised 16.10.2024 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2024 Water Environment Federation. 
520 |a Water pollution has become a major concern in recent years, affecting over 2 billion people worldwide, according to UNESCO. This pollution can occur by either naturally, such as algal blooms, or man-made when toxic substances are released into water bodies like lakes, rivers, springs, and oceans. To address this issue and monitor surface-level water pollution in local water bodies, an informative real-time vision-based surveillance system has been developed in conjunction with large language models (LLMs). This system has an integrated camera connected to a Raspberry Pi for processing input frames and is further linked to LLMs for generating contextual information regarding the type, causes, and impact of pollutants on both human health and the environment. This multi-model setup enables local authorities to monitor water pollution and take necessary steps to mitigate it. To train the vision model, seven major types of pollutants found in water bodies like algal bloom, synthetic foams, dead fishes, oil spills, wooden logs, industrial waste run-offs, and trashes were used for achieving accurate detection. ChatGPT API has been integrated with the model to generate contextual information about pollution detected. Thus, the multi-model system can conduct surveillance over water bodies and autonomously alert local authorities to take immediate action, eliminating the need for human intervention. PRACTITIONER POINTS: Combines cameras and LLMs with Raspberry Pi for processing and generating pollutant information. Uses YOLOv5 to detect algal blooms, synthetic foams, dead fish, oil spills, and industrial waste. Supports various modules and environments, including drones and mobile apps for broad monitoring. Educates on environmental healthand alerts authorities about water pollution 
650 4 |a Journal Article 
650 4 |a YOLOv5 object detection 
650 4 |a environmental monitoring technology 
650 4 |a large language models 
650 4 |a real‐time contextual information 
650 4 |a vision‐based surveillance system 
650 4 |a water pollution monitoring 
700 1 |a Sermet, Yusuf  |e verfasserin  |4 aut 
700 1 |a Cwiertny, David  |e verfasserin  |4 aut 
700 1 |a Demir, Ibrahim  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water environment research : a research publication of the Water Environment Federation  |d 1998  |g 96(2024), 8 vom: 11. Aug., Seite e11092  |w (DE-627)NLM098214292  |x 1554-7531  |7 nnns 
773 1 8 |g volume:96  |g year:2024  |g number:8  |g day:11  |g month:08  |g pages:e11092 
856 4 0 |u http://dx.doi.org/10.1002/wer.11092  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 96  |j 2024  |e 8  |b 11  |c 08  |h e11092