The Design and Optimality of Survey Counts : A Unified Framework Via the Fisher Information Maximizer

© The Author(s) 2022.

Bibliographische Detailangaben
Veröffentlicht in:Sociological methods & research. - 1977. - 53(2024), 3 vom: 18. Aug., Seite 1319-1349
1. Verfasser: Guo, Xin (VerfasserIn)
Weitere Verfasser: Fu, Qiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Sociological methods & research
Schlagworte:Journal Article Fisher Information Maximizer grouped and right-censored count modified Poisson estimator optimum experimental design survey methodology
Beschreibung
Zusammenfassung:© The Author(s) 2022.
Grouped and right-censored (GRC) counts have been used in a wide range of attitudinal and behavioural surveys yet they cannot be readily analyzed or assessed by conventional statistical models. This study develops a unified regression framework for the design and optimality of GRC counts in surveys. To process infinitely many grouping schemes for the optimum design, we propose a new two-stage algorithm, the Fisher Information Maximizer (FIM), which utilizes estimates from generalized linear models to find a global optimal grouping scheme among all possible N -group schemes. After we define, decompose, and calculate different types of regressor-specific design errors, our analyses from both simulation and empirical examples suggest that: 1) the optimum design of GRC counts is able to reduce the grouping error to zero, 2) the performance of modified Poisson estimators using GRC counts can be comparable to that of Poisson regression, and 3) the optimum design is usually able to achieve the same estimation efficiency with a smaller sample size
Beschreibung:Date Revised 10.08.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:0049-1241
DOI:10.1177/00491241221113877