|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM376028300 |
003 |
DE-627 |
005 |
20240820232551.0 |
007 |
cr uuu---uuuuu |
008 |
240808s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.4c02528
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1507.xml
|
035 |
|
|
|a (DE-627)NLM376028300
|
035 |
|
|
|a (NLM)39115458
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhang, Zhipeng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Identifying Target Molecule and Trace Amount of the Byproduct by Two-Dimensional Self-Assembly with Different Solution Concentrations
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.08.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Scanning tunneling microscopy (STM) is a powerful way to realize the recognition of self-assembled nanostructures on the atomic scale. In this article, dihexadecyl 6,9-bis((4-(hexadecyloxy)phenyl)ethynyl) phenanthro[9,10-c]thiophene-1,3-dicarboxylate (D-PT) and dihexadecyl 6-bromo-9-((4-(hexadecyloxy) phenyl)ethynyl)phenanthrol[9,10-c]thiophene-1,3-dicarboxylate (S-BrPT) with different substituents were chosen as the target system. D-PT with four side chains as the target molecule and S-BrPT with three side chains and a bromine substituent as the byproduct were mixed in a molar concentration ratio of 20:1. The effect of solution concentration on the molecular self-assembly of the mixture was investigated by STM at the hexadecane/HOPG interface. At high concentrations, only D-PT molecules formed a dimer pattern resulting from the intermolecular van der Waals force and self-adaption. Further diluting the solution, D-PT formed the coexisting dimer and linear structures, in which the linear pattern was formed via solvent coadsorption. At low concentrations, S-BrPT molecules forming N-shaped dimers appeared and filled the linear structure fabricated by D-PT molecules. With further decrease in the concentration, S-BrPT molecules formed N-shaped dimers covering almost half of the surface area, resulting from the C-Br···π and Br···H-C bonds. At very low concentrations, S-BrPT molecules formed N-shaped dimers to arrange the matrix architecture due to the coadsorption of more hexadecane molecules. Density functional theory (DFT) calculations demonstrated that the stronger intermolecular C-Br···π and Br···H-C bonds were significant factors in determining the formation of N-shaped dimers and the stability of this nanostructure. This work enriches the diversity of self-assembled motifs and provides a strategy to characterize different symmetric molecules with trace amounts in a mixed system by STM
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Zhao, Xiaoyang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Miao, Xinrui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Deng, Wenli
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 40(2024), 33 vom: 20. Aug., Seite 17826-17834
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:40
|g year:2024
|g number:33
|g day:20
|g month:08
|g pages:17826-17834
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.4c02528
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 40
|j 2024
|e 33
|b 20
|c 08
|h 17826-17834
|