Visualization and Quantification of State of Charge-Dependent Young's Modulus of LiMn2O4 Nanosized Particles by Bimodal AFM

Mechanical damage of LiMn2O4 active material caused by volume change, phase transition, and lithium diffusion-induced stress is the main degradation mechanism in lithium-ion batteries. Young's modulus is a key parameter of mechanical property, and its variation with lithium content x or state o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 40(2024), 33 vom: 20. Aug., Seite 17740-17746
1. Verfasser: Lou, Pengtao (VerfasserIn)
Weitere Verfasser: Bi, Zhuanfang, Wang, Xinru, Shang, Guangyi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM376025824
003 DE-627
005 20240820232550.0
007 cr uuu---uuuuu
008 240808s2024 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.4c02130  |2 doi 
028 5 2 |a pubmed24n1507.xml 
035 |a (DE-627)NLM376025824 
035 |a (NLM)39115211 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lou, Pengtao  |e verfasserin  |4 aut 
245 1 0 |a Visualization and Quantification of State of Charge-Dependent Young's Modulus of LiMn2O4 Nanosized Particles by Bimodal AFM 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Mechanical damage of LiMn2O4 active material caused by volume change, phase transition, and lithium diffusion-induced stress is the main degradation mechanism in lithium-ion batteries. Young's modulus is a key parameter of mechanical property, and its variation with lithium content x or state of charge (SOC) at the nanoscale is an important issue because such variation may have influences on the stress level and lithium-ion transport. In this study, we successfully developed bimodal atomic force microscopy (bimodal AFM) and related approaches to carry out surface topography imaging and Young's modulus mapping of LixMn2O4 nanosized particles. It was validated that the size of particles decreased with decreasing SOC due to delithiation during the charging cycle. The variation in Young's modulus with SOC was quantitatively determined using the silicon material as a reference, and the trend of the variation is consistent with the reported results of molecular dynamics simulation. Furthermore, spatially nonuniform distribution of Young's modulus on the nanosized particle surface was found even upon completion of charging. This phenomenon could be attributed to the coexistence of two phases during the charging process. Our experimental study reveals the correlation between Young's modulus of LiMn2O4 and SOC at the nanosized particle level, and we believe that the bimodal AFM will be widely used in the nanocharacterization of the electrode materials because lithium content- or SOC-dependent mechanical properties are common in battery electrode materials 
650 4 |a Journal Article 
700 1 |a Bi, Zhuanfang  |e verfasserin  |4 aut 
700 1 |a Wang, Xinru  |e verfasserin  |4 aut 
700 1 |a Shang, Guangyi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 40(2024), 33 vom: 20. Aug., Seite 17740-17746  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:40  |g year:2024  |g number:33  |g day:20  |g month:08  |g pages:17740-17746 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.4c02130  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 40  |j 2024  |e 33  |b 20  |c 08  |h 17740-17746