Self-Supervised Multimodal Learning : A Survey

Multimodal learning, which aims to understand and analyze information from multiple modalities, has achieved substantial progress in the supervised regime in recent years. However, the heavy dependence on data paired with expensive human annotations impedes scaling up models. Meanwhile, given the av...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2024) vom: 07. Aug.
1. Verfasser: Zong, Yongshuo (VerfasserIn)
Weitere Verfasser: Aodha, Oisin Mac, Hospedales, Timothy
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM375979557
003 DE-627
005 20240808234104.0
007 cr uuu---uuuuu
008 240808s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3429301  |2 doi 
028 5 2 |a pubmed24n1495.xml 
035 |a (DE-627)NLM375979557 
035 |a (NLM)39110564 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zong, Yongshuo  |e verfasserin  |4 aut 
245 1 0 |a Self-Supervised Multimodal Learning  |b A Survey 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Multimodal learning, which aims to understand and analyze information from multiple modalities, has achieved substantial progress in the supervised regime in recent years. However, the heavy dependence on data paired with expensive human annotations impedes scaling up models. Meanwhile, given the availability of large-scale unannotated data in the wild, self-supervised learning has become an attractive strategy to alleviate the annotation bottleneck. Building on these two directions, self-supervised multimodal learning (SSML) provides ways to learn from raw multimodal data. In this survey, we provide a comprehensive review of the state-of-the-art in SSML, in which we elucidate three major challenges intrinsic to self-supervised learning with multimodal data: (1) learning representations from multimodal data without labels, (2) fusion of different modalities, and (3) learning with unaligned data. We then detail existing solutions to these challenges. Specifically, we consider (1) objectives for learning from multimodal unlabeled data via self-supervision, (2) model architectures from the perspective of different multimodal fusion strategies, and (3) pair-free learning strategies for coarse-grained and fine-grained alignment. We also review real-world applications of SSML algorithms in diverse fields such as healthcare, remote sensing, and machine translation. Finally, we discuss challenges and future directions for SSML. A collection of related resources can be found at: https://github.com/ys-zong/awesome-self-supervised-multimodal-learning 
650 4 |a Journal Article 
700 1 |a Aodha, Oisin Mac  |e verfasserin  |4 aut 
700 1 |a Hospedales, Timothy  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2024) vom: 07. Aug.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:07  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3429301  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 07  |c 08