Enhancing Swimming Performance of Magnetic Helical Microswimmers by Surface Microstructure

Artificial bacterial flagella (ABF), also known as a magnetic helical microswimmer, has demonstrated enormous potential in various future biomedical applications (e.g., targeted drug delivery and minimally invasive surgery). Nevertheless, when used for in vivo/in vitro treatment applications, it is...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 40(2024), 33 vom: 20. Aug., Seite 17731-17739
1. Verfasser: Wang, Gang (VerfasserIn)
Weitere Verfasser: Wang, Sisi, Shi, Famin, Liu, Xuefei, Wang, Degui, Abuduwayiti, Aierken, Wang, Zhen, Liu, Mingqiang, Wu, Yan, Bi, Jinshun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM37595483X
003 DE-627
005 20240820232542.0
007 cr uuu---uuuuu
008 240807s2024 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.4c02107  |2 doi 
028 5 2 |a pubmed24n1507.xml 
035 |a (DE-627)NLM37595483X 
035 |a (NLM)39108086 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Gang  |e verfasserin  |4 aut 
245 1 0 |a Enhancing Swimming Performance of Magnetic Helical Microswimmers by Surface Microstructure 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.08.2024 
500 |a Date Revised 20.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Artificial bacterial flagella (ABF), also known as a magnetic helical microswimmer, has demonstrated enormous potential in various future biomedical applications (e.g., targeted drug delivery and minimally invasive surgery). Nevertheless, when used for in vivo/in vitro treatment applications, it is essential to achieve the high motion efficiency of the microswimmers for rapid therapy. In this paper, inspired by microorganisms, the surface microstructure was introduced into ABFs to investigate its effect on the swimming behavior. It was confirmed that compared with smooth counterparts, the ABF with surface microstructure reveals a smaller forward velocity below the step-out frequency (i.e., the frequency corresponding to the maximum velocity) but a larger maximum forward velocity and higher step-out frequency. A hydrodynamic model of microstructured ABF is employed to reveal the underlying movement mechanism, demonstrating that the interfacial slippage and the interaction between the fluid and the microstructure are essential to the swimming behavior. Furthermore, the effect of surface wettability and solid fraction of microstructure on the swimming performance of ABFs was investigated experimentally and analytically, which further reveals the influence of surface microstructure on the movement mechanism. The results present an effective approach for designing fast microrobots for in vivo/in vitro biomedical applications 
650 4 |a Journal Article 
700 1 |a Wang, Sisi  |e verfasserin  |4 aut 
700 1 |a Shi, Famin  |e verfasserin  |4 aut 
700 1 |a Liu, Xuefei  |e verfasserin  |4 aut 
700 1 |a Wang, Degui  |e verfasserin  |4 aut 
700 1 |a Abuduwayiti, Aierken  |e verfasserin  |4 aut 
700 1 |a Wang, Zhen  |e verfasserin  |4 aut 
700 1 |a Liu, Mingqiang  |e verfasserin  |4 aut 
700 1 |a Wu, Yan  |e verfasserin  |4 aut 
700 1 |a Bi, Jinshun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 40(2024), 33 vom: 20. Aug., Seite 17731-17739  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:40  |g year:2024  |g number:33  |g day:20  |g month:08  |g pages:17731-17739 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.4c02107  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 40  |j 2024  |e 33  |b 20  |c 08  |h 17731-17739