A hybrid approach to improvement of watershed water quality modeling by coupling process-based and deep learning models

© 2024 Water Environment Federation.

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 96(2024), 8 vom: 03. Aug., Seite e11079
1. Verfasser: Jeong, Dae Seong (VerfasserIn)
Weitere Verfasser: Jeong, Heewon, Kim, Jin Hwi, Kim, Joon Ha, Park, Yongeun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article deep learning hybrid model process‐based model uncalibrated SWAT watershed water quality modeling
LEADER 01000naa a22002652 4500
001 NLM375836039
003 DE-627
005 20240804232501.0
007 cr uuu---uuuuu
008 240804s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/wer.11079  |2 doi 
028 5 2 |a pubmed24n1491.xml 
035 |a (DE-627)NLM375836039 
035 |a (NLM)39096183 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jeong, Dae Seong  |e verfasserin  |4 aut 
245 1 2 |a A hybrid approach to improvement of watershed water quality modeling by coupling process-based and deep learning models 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.08.2024 
500 |a Date Revised 03.08.2024 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2024 Water Environment Federation. 
520 |a Watershed water quality modeling to predict changing water quality is an essential tool for devising effective management strategies within watersheds. Process-based models (PBMs) are typically used to simulate water quality modeling. In watershed modeling utilizing PBMs, it is crucial to effectively reflect the actual watershed conditions by appropriately setting the model parameters. However, parameter calibration and validation are time-consuming processes with inherent uncertainties. Addressing these challenges, this research aims to address various challenges encountered in the calibration and validation processes of PBMs. To achieve this, the development of a hybrid model, combining uncalibrated PBMs with data-driven models (DDMs) such as deep learning algorithms is proposed. This hybrid model is intended to enhance watershed modeling by integrating the strengths of both PBMs and DDMs. The hybrid model is constructed by coupling an uncalibrated Soil and Water Assessment Tool (SWAT) with a Long Short-Term Memory (LSTM). SWAT, a representative PBM, is constructed using geographical information and 5-year observed data from the Yeongsan River Watershed. The output variables of the uncalibrated SWAT, such as streamflow, suspended solids (SS), total nitrogen (TN), and total phosphorus (TP), as well as observed precipitation for the day and previous day, are used as training data for the deep learning model to predict the TP load. For the comparison, the conventional SWAT model is calibrated and validated to predict the TP load. The results revealed that TP load simulated by the hybrid model predicted the observed TP better than that predicted by the calibrated SWAT model. Also, the hybrid model reflects seasonal variations in the TP load, including peak events. Remarkably, when applied to other sub-basins without specific training, the hybrid model consistently outperformed the calibrated SWAT model. In conclusion, application of the SWAT-LSTM hybrid model could be a useful tool for decreasing uncertainties in model calibration and improving the overall predictive performance in watershed modeling. PRACTITIONER POINTS: We aimed to enhance process-based models for watershed water-quality modeling. The Soil and Water Assessment Tool-Long Short-Term Memory hybrid model's predicted and total phosphorus (TP) matched the observed TP. It exhibited superior predictive performance when applied to other sub-basins. The hybrid model will overcome the constraints of conventional modeling. It will also enable more effective and efficient modeling 
650 4 |a Journal Article 
650 4 |a deep learning 
650 4 |a hybrid model 
650 4 |a process‐based model 
650 4 |a uncalibrated SWAT 
650 4 |a watershed water quality modeling 
700 1 |a Jeong, Heewon  |e verfasserin  |4 aut 
700 1 |a Kim, Jin Hwi  |e verfasserin  |4 aut 
700 1 |a Kim, Joon Ha  |e verfasserin  |4 aut 
700 1 |a Park, Yongeun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water environment research : a research publication of the Water Environment Federation  |d 1998  |g 96(2024), 8 vom: 03. Aug., Seite e11079  |w (DE-627)NLM098214292  |x 1554-7531  |7 nnns 
773 1 8 |g volume:96  |g year:2024  |g number:8  |g day:03  |g month:08  |g pages:e11079 
856 4 0 |u http://dx.doi.org/10.1002/wer.11079  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 96  |j 2024  |e 8  |b 03  |c 08  |h e11079